International Journal of Information Technology and Computer Science (IJITCS)

ISSN: 2074-9007 (Print)

ISSN: 2074-9015 (Online)

DOI: https://doi.org/10.5815/ijitcs

Website: https://www.mecs-press.org/ijitcs

Published By: MECS Press

Frequency: 6 issues per year

Number(s) Available: 130

(IJITCS) in Google Scholar Citations / h5-index

IJITCS is committed to bridge the theory and practice of information technology and computer science. From innovative ideas to specific algorithms and full system implementations, IJITCS publishes original, peer-reviewed, and high quality articles in the areas of information technology and computer science. IJITCS is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of information technology and computer science applications.

 

IJITCS has been abstracted or indexed by several world class databases: Scopus, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, VINITI, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..

Latest Issue
Most Viewed
Most Downloaded

IJITCS Vol. 16, No. 2, Apr. 2024

REGULAR PAPERS

Big Data Analytics Maturity Model for SMEs

By Matthew Willetts Anthony S. Atkins

DOI: https://doi.org/10.5815/ijitcs.2024.02.01, Pub. Date: 8 Apr. 2024

Small and medium-sized enterprises (SMEs) are the backbone of the global economy, constituting 90% of all businesses. Despite being widely adopted by large businesses who have reported numerous benefits including increased profitability and increased efficiency and a survey in 2017 of 50 Fortune 1000 and leading firms’ executives indicated that 48.4% of respondents confirmed they are achieving measurable results from their Big Data investments, with 80.7% confirming that they have generated business. Big Data Analytics is adopted by only 10% of SMEs. The paper outlines a review of Big Data Maturity Models and discusses their positive features and limitations. Previous research has analysed the barriers to adoption of Big Data Analytics in SMEs and a scoring tool has been developed to help SMEs adopt Big Data Analytics. The paper demonstrates that the scoring tool could be translated and compared to a Maturity Model to provide a visual representation of Big Data Analytics maturity and help SMEs to understand where they are on the journey. The paper outlines a case study to show a comparison to provide intuitive visual model to assist top management to improve their competitive advantage.

[...] Read more.
Augmenting Sentiment Analysis Prediction in Binary Text Classification through Advanced Natural Language Processing Models and Classifiers

By Zhengbing Hu Ivan Dychka Kateryna Potapova Vasyl Meliukh

DOI: https://doi.org/10.5815/ijitcs.2024.02.02, Pub. Date: 8 Apr. 2024

Sentiment analysis is a critical component in natural language processing applications, particularly for text classification. By employing state-of-the-art techniques such as ensemble methods, transfer learning and deep learning architectures, our methodology significantly enhances the robustness and precision of sentiment predictions. We systematically investigate the impact of various NLP models, including recurrent neural networks and transformer-based architectures, on sentiment classification tasks. Furthermore, we introduce a novel ensemble method that combines the strengths of multiple classifiers to improve the predictive ability of the system. The results demonstrate the potential of integrating state-of-the-art Natural Language Processing (NLP) models with ensemble classifiers to advance sentiment analysis. This lays the foundation for a more advanced comprehension of textual sentiments in diverse applications.

[...] Read more.
Farmland Intrusion Detection using Internet of Things and Computer Vision Techniques

By Iyinoluwa M. Oyelade Olutayo K. Boyinbode Olumide S. Adewale Emmanuel O. Ibam

DOI: https://doi.org/10.5815/ijitcs.2024.02.03, Pub. Date: 8 Apr. 2024

Farmland security in Nigeria is still a major challenge and existing methods such as building brick fences around the farmland, installing electric fences, setting up deterrent plants with spikey branches or those that have displeasing scents are no longer suitable for farmland security. This paper presents an IoT based farmland intrusion detection model using sensors and computer vision techniques. Passive Infrared (PIR) sensors and camera sensors are mounted in strategic positions on the farm. The PIR sensor senses motion by the radiation of body heat and sends a message to the raspberry pi to trigger the camera to take a picture of the scene. An improved Faster Region Based Convolutional Neural Network is developed and used for object detection and One-shot learning algorithm for face recognition in the case of a person. At the end of the detection and recognition stage, details of intrusion are sent to the farm owner through text message and email notification. The raspberry pi also turns on the wade off system to divert an intruding animal away. The model achieved an improved accuracy of 92.5% compared to previous methods and effectively controlled illegal entry into a farmland.

[...] Read more.
Web Application Penetration Testing on Udayana University's OASE E-learning Platform Using Information System Security Assessment Framework (ISSAF) and Open Source Security Testing Methodology Manual (OSSTMM)

By I Gusti Agung Surya Pramana Wijaya Gusti Made Arya Sasmita I Putu Agus Eka Pratama

DOI: https://doi.org/10.5815/ijitcs.2024.02.04, Pub. Date: 8 Apr. 2024

Education is a field that utilizes information technology to support academic and operational activities. One of the technologies widely used in the education sector is web-based applications. Web-based technologies are vulnerable to exploitation by attackers, which highlights the importance of ensuring strong security measures in web-based systems. As an educational organization, Udayana University utilizes a web-based application called OASE. OASE, being a web-based system, requires thorough security verification. Penetration testing is conducted to assess the security of OASE. This testing can be performed using the ISSAF and OSSTMM frameworks. The penetration testing based on the ISSAF framework consists of 9 steps, while the OSSTMM framework consists of 7 steps for assessment. The results of the OASE penetration testing revealed several system vulnerabilities. Throughout the ISSAF phases, only 4 vulnerabilities and 3 information-level vulnerabilities were identified in the final testing results of OASE. Recommendations for addressing these vulnerabilities are provided as follows. Implement a Web Application Firewall (WAF) to reduce the risk of common web attacks in the OASE web application. input and output validation to prevent the injection of malicious scripts addressing the stored XSS vulnerability. Update the server software regularly and directory permission checks to eliminate unnecessary information files and prevent unauthorized access. Configure a content security policy on the web server to ensure mitigation and prevent potential exploitation by attackers.

[...] Read more.
ScrumSpiral: An Improved Hybrid Software Development Model

By Tapu Biswas Farhan Sadik Ferdous Zinniya Taffannum Pritee Akinul Islam Jony

DOI: https://doi.org/10.5815/ijitcs.2024.02.05, Pub. Date: 8 Apr. 2024

In the lightning-quick world of software development, it is essential to find the most effective and efficient development methodology. This thesis represents "Scrum Spiral" which is an improved hybrid software development model that combines the features of Scrum and Spiral approach to enhance the software development process. This thesis aims to identify the usefulness of "ScrumSpiral" methodology and compare it with other hybrid software development models to encourage its use in software development projects. To develop this hybrid model, we did extensive research on the software engineering domain and decided to create a hybrid model by using Scrum and Spiral, named "Scrum Spiral" which is suitable for complicated projects and also for those projects whose requirements are not fixed. Traditional software development models face numerous challenges in rapidly changing markets. By developing this kind of hybrid model, we want to overcome these kinds of limitations and present the software development community with a novel concept for better project results. Final outcome of this thesis was that we developed a model that should be able to complete the project according to the expected schedule, satisfy customer requirements, and obtain productivity through team coordination. The significance of the hybrid model "Scrum Spiral" is reflected in its ability to offer flexibility towards various size projects, proactive risk management to identify all risks before developing the system, and result in higher-quality outcomes for those projects whose requirements are not properly described initially in the project.

[...] Read more.
Design and Implementation of a Web-based Document Management System

By Samuel M. Alade

DOI: https://doi.org/10.5815/ijitcs.2023.02.04, Pub. Date: 8 Apr. 2023

One area that has seen rapid growth and differing perspectives from many developers in recent years is document management. This idea has advanced beyond some of the steps where developers have made it simple for anyone to access papers in a matter of seconds. It is impossible to overstate the importance of document management systems as a necessity in the workplace environment of an organization. Interviews, scenario creation using participants' and stakeholders' first-hand accounts, and examination of current procedures and structures were all used to collect data. The development approach followed a software development methodology called Object-Oriented Hypermedia Design Methodology. With the help of Unified Modeling Language (UML) tools, a web-based electronic document management system (WBEDMS) was created. Its database was created using MySQL, and the system was constructed using web technologies including XAMPP, HTML, and PHP Programming language. The results of the system evaluation showed a successful outcome. After using the system that was created, respondents' satisfaction with it was 96.60%. This shows that the document system was regarded as adequate and excellent enough to achieve or meet the specified requirement when users (secretaries and departmental personnel) used it. Result showed that the system developed yielded an accuracy of 95% and usability of 99.20%. The report came to the conclusion that a suggested electronic document management system would improve user happiness, boost productivity, and guarantee time and data efficiency. It follows that well-known document management systems undoubtedly assist in holding and managing a substantial portion of the knowledge assets, which include documents and other associated items, of Organizations.

[...] Read more.
Cardiotocography Data Analysis to Predict Fetal Health Risks with Tree-Based Ensemble Learning

By Pankaj Bhowmik Pulak Chandra Bhowmik U. A. Md. Ehsan Ali Md. Sohrawordi

DOI: https://doi.org/10.5815/ijitcs.2021.05.03, Pub. Date: 8 Oct. 2021

A sizeable number of women face difficulties during pregnancy, which eventually can lead the fetus towards serious health problems. However, early detection of these risks can save both the invaluable life of infants and mothers. Cardiotocography (CTG) data provides sophisticated information by monitoring the heart rate signal of the fetus, is used to predict the potential risks of fetal wellbeing and for making clinical conclusions. This paper proposed to analyze the antepartum CTG data (available on UCI Machine Learning Repository) and develop an efficient tree-based ensemble learning (EL) classifier model to predict fetal health status. In this study, EL considers the Stacking approach, and a concise overview of this approach is discussed and developed accordingly. The study also endeavors to apply distinct machine learning algorithmic techniques on the CTG dataset and determine their performances. The Stacking EL technique, in this paper, involves four tree-based machine learning algorithms, namely, Random Forest classifier, Decision Tree classifier, Extra Trees classifier, and Deep Forest classifier as base learners. The CTG dataset contains 21 features, but only 10 most important features are selected from the dataset with the Chi-square method for this experiment, and then the features are normalized with Min-Max scaling. Following that, Grid Search is applied for tuning the hyperparameters of the base algorithms. Subsequently, 10-folds cross validation is performed to select the meta learner of the EL classifier model. However, a comparative model assessment is made between the individual base learning algorithms and the EL classifier model; and the finding depicts EL classifiers’ superiority in fetal health risks prediction with securing the accuracy of about 96.05%. Eventually, this study concludes that the Stacking EL approach can be a substantial paradigm in machine learning studies to improve models’ accuracy and reduce the error rate.

[...] Read more.
Multi-Factor Authentication for Improved Enterprise Resource Planning Systems Security

By Carolyne Kimani James I. Obuhuma Emily Roche

DOI: https://doi.org/10.5815/ijitcs.2023.03.04, Pub. Date: 8 Jun. 2023

Universities across the globe have increasingly adopted Enterprise Resource Planning (ERP) systems, a software that provides integrated management of processes and transactions in real-time. These systems contain lots of information hence require secure authentication. Authentication in this case refers to the process of verifying an entity’s or device’s identity, to allow them access to specific resources upon request. However, there have been security and privacy concerns around ERP systems, where only the traditional authentication method of a username and password is commonly used. A password-based authentication approach has weaknesses that can be easily compromised. Cyber-attacks to access these ERP systems have become common to institutions of higher learning and cannot be underestimated as they evolve with emerging technologies. Some universities worldwide have been victims of cyber-attacks which targeted authentication vulnerabilities resulting in damages to the institutions reputations and credibilities. Thus, this research aimed at establishing authentication methods used for ERPs in Kenyan universities, their vulnerabilities, and proposing a solution to improve on ERP system authentication. The study aimed at developing and validating a multi-factor authentication prototype to improve ERP systems security. Multi-factor authentication which combines several authentication factors such as: something the user has, knows, or is, is a new state-of-the-art technology that is being adopted to strengthen systems’ authentication security. This research used an exploratory sequential design that involved a survey of chartered Kenyan Universities, where questionnaires were used to collect data that was later analyzed using descriptive and inferential statistics. Stratified, random and purposive sampling techniques were used to establish the sample size and the target group. The dependent variable for the study was limited to security rating with respect to realization of confidentiality, integrity, availability, and usability while the independent variables were limited to adequacy of security, authentication mechanisms, infrastructure, information security policies, vulnerabilities, and user training. Correlation and regression analysis established vulnerabilities, information security policies, and user training to be having a higher impact on system security. The three variables hence acted as the basis for the proposed multi-factor authentication framework for improve ERP systems security.

[...] Read more.
Accident Response Time Enhancement Using Drones: A Case Study in Najm for Insurance Services

By Salma M. Elhag Ghadi H. Shaheen Fatmah H. Alahmadi

DOI: https://doi.org/10.5815/ijitcs.2023.06.01, Pub. Date: 8 Dec. 2023

One of the main reasons for mortality among people is traffic accidents. The percentage of traffic accidents in the world has increased to become the third in the expected causes of death in 2020. In Saudi Arabia, there are more than 460,000 car accidents every year. The number of car accidents in Saudi Arabia is rising, especially during busy periods such as Ramadan and the Hajj season. The Saudi Arabia’s government is making the required efforts to lower the nations of car accident rate. This paper suggests a business process improvement for car accident reports handled by Najm in accordance with the Saudi Vision 2030. According to drone success in many fields (e.g., entertainment, monitoring, and photography), the paper proposes using drones to respond to accident reports, which will help to expedite the process and minimize turnaround time. In addition, the drone provides quick accident response and recording scenes with accurate results. The Business Process Management (BPM) methodology is followed in this proposal. The model was validated by comparing before and after simulation results which shows a significant impact on performance about 40% regarding turnaround time. Therefore, using drones can enhance the process of accident response with Najm in Saudi Arabia.

[...] Read more.
Advanced Applications of Neural Networks and Artificial Intelligence: A Review

By Koushal Kumar Gour Sundar Mitra Thakur

DOI: https://doi.org/10.5815/ijitcs.2012.06.08, Pub. Date: 8 Jun. 2012

Artificial Neural Network is a branch of Artificial intelligence and has been accepted as a new computing technology in computer science fields. This paper reviews the field of Artificial intelligence and focusing on recent applications which uses Artificial Neural Networks (ANN’s) and Artificial Intelligence (AI). It also considers the integration of neural networks with other computing methods Such as fuzzy logic to enhance the interpretation ability of data. Artificial Neural Networks is considers as major soft-computing technology and have been extensively studied and applied during the last two decades. The most general applications where neural networks are most widely used for problem solving are in pattern recognition, data analysis, control and clustering. Artificial Neural Networks have abundant features including high processing speeds and the ability to learn the solution to a problem from a set of examples. The main aim of this paper is to explore the recent applications of Neural Networks and Artificial Intelligence and provides an overview of the field, where the AI & ANN’s are used and discusses the critical role of AI & NN played in different areas.

[...] Read more.
An Efficient Algorithm for Density Based Subspace Clustering with Dynamic Parameter Setting

By B.Jaya Lakshmi K.B.Madhuri M.Shashi

DOI: https://doi.org/10.5815/ijitcs.2017.06.04, Pub. Date: 8 Jun. 2017

Density based Subspace Clustering algorithms have gained their importance owing to their ability to identify arbitrary shaped subspace clusters. Density-connected SUBspace CLUstering(SUBCLU) uses two input parameters namely epsilon and minpts whose values are same in all subspaces which leads to a significant loss to cluster quality. There are two important issues to be handled. Firstly, cluster densities vary in subspaces which refers to the phenomenon of density divergence. Secondly, the density of clusters within a subspace may vary due to the data characteristics which refers to the phenomenon of multi-density behavior. To handle these two issues of density divergence and multi-density behavior, the authors propose an efficient algorithm for generating subspace clusters by appropriately fixing the input parameter epsilon. The version1 of the proposed algorithm computes epsilon dynamically for each subspace based on the maximum spread of the data. To handle data that exhibits multi-density behavior, the algorithm is further refined and presented in version2. The initial value of epsilon is set to half of the value resulted in the version1 for a subspace and a small step value 'delta' is used for finalizing the epsilon separately for each cluster through step-wise refinement to form multiple higher dimensional subspace clusters. The proposed algorithm is implemented and tested on various bench-mark and synthetic datasets. It outperforms SUBCLU in terms of cluster quality and execution time.

[...] Read more.
Performance of Machine Learning Algorithms with Different K Values in K-fold Cross-Validation

By Isaac Kofi Nti Owusu Nyarko-Boateng Justice Aning

DOI: https://doi.org/10.5815/ijitcs.2021.06.05, Pub. Date: 8 Dec. 2021

The numerical value of k in a k-fold cross-validation training technique of machine learning predictive models is an essential element that impacts the model’s performance. A right choice of k results in better accuracy, while a poorly chosen value for k might affect the model’s performance. In literature, the most commonly used values of k are five (5) or ten (10), as these two values are believed to give test error rate estimates that suffer neither from extremely high bias nor very high variance. However, there is no formal rule. To the best of our knowledge, few experimental studies attempted to investigate the effect of diverse k values in training different machine learning models. This paper empirically analyses the prevalence and effect of distinct k values (3, 5, 7, 10, 15 and 20) on the validation performance of four well-known machine learning algorithms (Gradient Boosting Machine (GBM), Logistic Regression (LR), Decision Tree (DT) and K-Nearest Neighbours (KNN)). It was observed that the value of k and model validation performance differ from one machine-learning algorithm to another for the same classification task. However, our empirical suggest that k = 7 offers a slight increase in validations accuracy and area under the curve measure with lesser computational complexity than k = 10 across most MLA. We discuss in detail the study outcomes and outline some guidelines for beginners in the machine learning field in selecting the best k value and machine learning algorithm for a given task.

[...] Read more.
A Systematic Review of Natural Language Processing in Healthcare

By Olaronke G. Iroju Janet O. Olaleke

DOI: https://doi.org/10.5815/ijitcs.2015.08.07, Pub. Date: 8 Jul. 2015

The healthcare system is a knowledge driven industry which consists of vast and growing volumes of narrative information obtained from discharge summaries/reports, physicians case notes, pathologists as well as radiologists reports. This information is usually stored in unstructured and non-standardized formats in electronic healthcare systems which make it difficult for the systems to understand the information contents of the narrative information. Thus, the access to valuable and meaningful healthcare information for decision making is a challenge. Nevertheless, Natural Language Processing (NLP) techniques have been used to structure narrative information in healthcare. Thus, NLP techniques have the capability to capture unstructured healthcare information, analyze its grammatical structure, determine the meaning of the information and translate the information so that it can be easily understood by the electronic healthcare systems. Consequently, NLP techniques reduce cost as well as improve the quality of healthcare. It is therefore against this background that this paper reviews the NLP techniques used in healthcare, their applications as well as their limitations.

[...] Read more.
Forecasting Stock Market Trend using Machine Learning Algorithms with Technical Indicators

By Partho Protim Dey Nadia Nahar B M Mainul Hossain

DOI: https://doi.org/10.5815/ijitcs.2020.03.05, Pub. Date: 8 Jun. 2020

Stock market prediction is a process of trying to decide the stock trends based on the analysis of historical data. However, the stock market is subject to rapid changes. It is very difficult to predict because of its dynamic & unpredictable nature. The main goal of this paper is to present a model that can predict stock market trend. The model is implemented with the help of machine learning algorithms using eleven technical indicators. The model is trained and tested by the published stock data obtained from DSE (Dhaka Stock Exchange, Bangladesh). The empirical result reveals the effectiveness of machine learning techniques with a maximum accuracy of 86.67%, 64.13% and 69.21% for “today”, “tomorrow” and “day_after_tomorrow”.

[...] Read more.
Development of an Interactive Dashboard for Analyzing Autism Spectrum Disorder (ASD) Data using Machine Learning

By Avishek Saha Dibakar Barua Mahbub C. Mishu Ziad Mohib Sumaya Binte Zilani Choya

DOI: https://doi.org/10.5815/ijitcs.2022.04.02, Pub. Date: 8 Aug. 2022

Autism Spectrum Disorder (ASD) is a neuro developmental disorder that affects a person's ability to communicate and interact with others for rest of the life. It affects a person's comprehension and social interactions. Furthermore, people with ASD experience a wide range of symptoms, including difficulties while interacting with others, repeated behaviors, and an inability to function successfully in other areas of everyday life. Autism can be diagnosed at any age and is referred to as a "behavioral disorder" since symptoms usually appear in the life's first two years. The majority of individuals are unfamiliar with the illness and so don't know whether or not a person is disordered. Rather than aiding the sufferer, this typically leads to his or her isolation from society. The problem with ASD starts in childhood and extends into adolescence and adulthood. In this paper, we studied 25 research articles on autism spectrum disorder (ASD) prediction using machine learning techniques. The data and findings of those publications using various approaches and algorithms are analyzed. Techniques are primarily assessed using four publicly accessible non-clinically ASD datasets. We found that support vector machine (SVM) and Convolutional Neural Network (CNN) provides most accurate results compare to other techniques. Therefore, we developed an interactive dashboard using Tableau and Python to analyze Autism data.

[...] Read more.
Cardiotocography Data Analysis to Predict Fetal Health Risks with Tree-Based Ensemble Learning

By Pankaj Bhowmik Pulak Chandra Bhowmik U. A. Md. Ehsan Ali Md. Sohrawordi

DOI: https://doi.org/10.5815/ijitcs.2021.05.03, Pub. Date: 8 Oct. 2021

A sizeable number of women face difficulties during pregnancy, which eventually can lead the fetus towards serious health problems. However, early detection of these risks can save both the invaluable life of infants and mothers. Cardiotocography (CTG) data provides sophisticated information by monitoring the heart rate signal of the fetus, is used to predict the potential risks of fetal wellbeing and for making clinical conclusions. This paper proposed to analyze the antepartum CTG data (available on UCI Machine Learning Repository) and develop an efficient tree-based ensemble learning (EL) classifier model to predict fetal health status. In this study, EL considers the Stacking approach, and a concise overview of this approach is discussed and developed accordingly. The study also endeavors to apply distinct machine learning algorithmic techniques on the CTG dataset and determine their performances. The Stacking EL technique, in this paper, involves four tree-based machine learning algorithms, namely, Random Forest classifier, Decision Tree classifier, Extra Trees classifier, and Deep Forest classifier as base learners. The CTG dataset contains 21 features, but only 10 most important features are selected from the dataset with the Chi-square method for this experiment, and then the features are normalized with Min-Max scaling. Following that, Grid Search is applied for tuning the hyperparameters of the base algorithms. Subsequently, 10-folds cross validation is performed to select the meta learner of the EL classifier model. However, a comparative model assessment is made between the individual base learning algorithms and the EL classifier model; and the finding depicts EL classifiers’ superiority in fetal health risks prediction with securing the accuracy of about 96.05%. Eventually, this study concludes that the Stacking EL approach can be a substantial paradigm in machine learning studies to improve models’ accuracy and reduce the error rate.

[...] Read more.
Design and Implementation of a Web-based Document Management System

By Samuel M. Alade

DOI: https://doi.org/10.5815/ijitcs.2023.02.04, Pub. Date: 8 Apr. 2023

One area that has seen rapid growth and differing perspectives from many developers in recent years is document management. This idea has advanced beyond some of the steps where developers have made it simple for anyone to access papers in a matter of seconds. It is impossible to overstate the importance of document management systems as a necessity in the workplace environment of an organization. Interviews, scenario creation using participants' and stakeholders' first-hand accounts, and examination of current procedures and structures were all used to collect data. The development approach followed a software development methodology called Object-Oriented Hypermedia Design Methodology. With the help of Unified Modeling Language (UML) tools, a web-based electronic document management system (WBEDMS) was created. Its database was created using MySQL, and the system was constructed using web technologies including XAMPP, HTML, and PHP Programming language. The results of the system evaluation showed a successful outcome. After using the system that was created, respondents' satisfaction with it was 96.60%. This shows that the document system was regarded as adequate and excellent enough to achieve or meet the specified requirement when users (secretaries and departmental personnel) used it. Result showed that the system developed yielded an accuracy of 95% and usability of 99.20%. The report came to the conclusion that a suggested electronic document management system would improve user happiness, boost productivity, and guarantee time and data efficiency. It follows that well-known document management systems undoubtedly assist in holding and managing a substantial portion of the knowledge assets, which include documents and other associated items, of Organizations.

[...] Read more.
Multi-Factor Authentication for Improved Enterprise Resource Planning Systems Security

By Carolyne Kimani James I. Obuhuma Emily Roche

DOI: https://doi.org/10.5815/ijitcs.2023.03.04, Pub. Date: 8 Jun. 2023

Universities across the globe have increasingly adopted Enterprise Resource Planning (ERP) systems, a software that provides integrated management of processes and transactions in real-time. These systems contain lots of information hence require secure authentication. Authentication in this case refers to the process of verifying an entity’s or device’s identity, to allow them access to specific resources upon request. However, there have been security and privacy concerns around ERP systems, where only the traditional authentication method of a username and password is commonly used. A password-based authentication approach has weaknesses that can be easily compromised. Cyber-attacks to access these ERP systems have become common to institutions of higher learning and cannot be underestimated as they evolve with emerging technologies. Some universities worldwide have been victims of cyber-attacks which targeted authentication vulnerabilities resulting in damages to the institutions reputations and credibilities. Thus, this research aimed at establishing authentication methods used for ERPs in Kenyan universities, their vulnerabilities, and proposing a solution to improve on ERP system authentication. The study aimed at developing and validating a multi-factor authentication prototype to improve ERP systems security. Multi-factor authentication which combines several authentication factors such as: something the user has, knows, or is, is a new state-of-the-art technology that is being adopted to strengthen systems’ authentication security. This research used an exploratory sequential design that involved a survey of chartered Kenyan Universities, where questionnaires were used to collect data that was later analyzed using descriptive and inferential statistics. Stratified, random and purposive sampling techniques were used to establish the sample size and the target group. The dependent variable for the study was limited to security rating with respect to realization of confidentiality, integrity, availability, and usability while the independent variables were limited to adequacy of security, authentication mechanisms, infrastructure, information security policies, vulnerabilities, and user training. Correlation and regression analysis established vulnerabilities, information security policies, and user training to be having a higher impact on system security. The three variables hence acted as the basis for the proposed multi-factor authentication framework for improve ERP systems security.

[...] Read more.
A Fast Topological Parallel Algorithm for Traversing Large Datasets

By Thiago Nascimento Rodrigues

DOI: https://doi.org/10.5815/ijitcs.2023.01.01, Pub. Date: 8 Feb. 2023

This work presents a parallel implementation of a graph-generating algorithm designed to be straightforwardly adapted to traverse large datasets. This new approach has been validated in a correlated scenario known as the word ladder problem. The new parallel algorithm induces the same topological structure proposed by its serial version and also builds the shortest path between any pair of words to be connected by a ladder of words. The implemented parallelism paradigm is the Multiple Instruction Stream - Multiple Data Stream (MIMD) and the test suite embraces 23-word ladder instances whose intermediate words were extracted from a dictionary of 183,719 words (dataset). The word morph quality (the shortest path between two input words) and the word morph performance (CPU time) were evaluated against a serial implementation of the original algorithm. The proposed parallel algorithm generated the optimal solution for each pair of words tested, that is, the minimum word ladder connecting an initial word to a final word was found. Thus, there was no negative impact on the quality of the solutions comparing them with those obtained through the serial ANG algorithm. However, there was an outstanding improvement considering the CPU time required to build the word ladder solutions. In fact, the time improvement was up to 99.85%, and speedups greater than 2.0X were achieved with the parallel algorithm.

[...] Read more.
Incorporating Preference Changes through Users’ Input in Collaborative Filtering Movie Recommender System

By Abba Almu Aliyu Ahmad Abubakar Roko Mansur Aliyu

DOI: https://doi.org/10.5815/ijitcs.2022.04.05, Pub. Date: 8 Aug. 2022

The usefulness of Collaborative filtering recommender system is affected by its ability to capture users' preference changes on the recommended items during recommendation process. This makes it easy for the system to satisfy users' interest over time providing good and quality recommendations. The Existing system studied fails to solicit for user inputs on the recommended items and it is also unable to incorporate users' preference changes with time which lead to poor quality recommendations. In this work, an Enhanced Movie Recommender system that recommends movies to users is presented to improve the quality of recommendations. The system solicits for users' inputs to create a user profiles. It then incorporates a set of new features (such as age and genre) to be able to predict user's preference changes with time. This enabled it to recommend movies to the users based on users new preferences. The experimental study conducted on Netflix and Movielens datasets demonstrated that, compared to the existing work, the proposed work improved the recommendation results to the users based on the values of Precision and RMSE obtained in this study which in turn returns good recommendations to the users.

[...] Read more.
Detecting and Preventing Common Web Application Vulnerabilities: A Comprehensive Approach

By Najla Odeh Sherin Hijazi

DOI: https://doi.org/10.5815/ijitcs.2023.03.03, Pub. Date: 8 Jun. 2023

Web applications are becoming very important in our lives as many sensitive processes depend on them. Therefore, it is critical for safety and invulnerability against malicious attacks. Most studies focus on ways to detect these attacks individually. In this study, we develop a new vulnerability system to detect and prevent vulnerabilities in web applications. It has multiple functions to deal with some recurring vulnerabilities. The proposed system provided the detection and prevention of four types of vulnerabilities, including SQL injection, cross-site scripting attacks, remote code execution, and fingerprinting of backend technologies. We investigated the way worked for every type of vulnerability; then the process of detecting each type of vulnerability; finally, we provided prevention for each type of vulnerability. Which achieved three goals: reduce testing costs, increase efficiency, and safety. The proposed system has been validated through a practical application on a website, and experimental results demonstrate its effectiveness in detecting and preventing security threats. Our study contributes to the field of security by presenting an innovative approach to addressing security concerns, and our results highlight the importance of implementing advanced detection and prevention methods to protect against potential cyberattacks. The significance and research value of this survey lies in its potential to enhance the security of online systems and reduce the risk of data breaches.

[...] Read more.
A Trust Management System for the Nigerian Cyber-health Community

By Ifeoluwani Jenyo Elizabeth A. Amusan Justice O. Emuoyibofarhe

DOI: https://doi.org/10.5815/ijitcs.2023.01.02, Pub. Date: 8 Feb. 2023

Trust is a basic requirement for the acceptance and adoption of new services related to health care, and therefore, vital in ensuring that the integrity of shared patient information among multi-care providers is preserved and that no one has tampered with it. The cyber-health community in Nigeria is in its infant stage with health care systems and services being mostly fragmented, disjointed, and heterogeneous with strong local autonomy and distributed among several healthcare givers platforms. There is the need for a trust management structure for guaranteed privacy and confidentiality to mitigate vulnerabilities to privacy thefts. In this paper, we developed an efficient Trust Management System that hybridized Real-Time Integrity Check (RTIC) and Dynamic Trust Negotiation (DTN) premised on the Confidentiality, Integrity, and Availability (CIA) model of information security. This was achieved through the design and implementation of an indigenous and generic architectural framework and model for a secured Trust Management System with the use of the advanced encryption standard (AES-256) algorithm for securing health records during transmission. The developed system achieved Reliabity score, Accuracy and Availability of 0.97, 91.30% and 96.52% respectively.

[...] Read more.
Development of IoT Cloud-based Platform for Smart Farming in the Sub-saharan Africa with Implementation of Smart-irrigation as Test-Case

By Supreme A. Okoh Elizabeth N. Onwuka Bala A. Salihu Suleiman Zubairu Peter Y. Dibal Emmanuel Nwankwo

DOI: https://doi.org/10.5815/ijitcs.2023.02.01, Pub. Date: 8 Apr. 2023

UN Department of Economics and Social Affairs predicted that the world population will increase by 2 billion in 2050 with over 50% from the Sub-Saharan Africa (SSA). Considering the level of poverty and food insecurity in the region, there is an urgent need for a sustainable increase in agricultural produce. However, farming approach in the region is primarily traditional. Traditional farming is characterized by high labor costs, low production, and under/oversupply of farm inputs. All these factors make farming unappealing to many. The use of digital technologies such as broadband, Internet of Things (IoT), Cloud computing, and Big Data Analytics promise improved returns on agricultural investments and could make farming appealing even to the youth. However, initial cost of smart farming could be high. Therefore, development of a dedicated IoT cloud-based platform is imperative. Then farmers could subscribe and have their farms managed on the platform. It should be noted that majority of farmers in SSA are smallholders who are poor, uneducated, and live in rural areas but produce about 80% of the food. They majorly use 2G phones, which are not internet enabled. These peculiarities must be factored into the design of any functional IoT platform that would serve this group. This paper presents the development of such a platform, which was tested with smart irrigation of maize crops in a testbed. Besides the convenience provided by the smart system, it recorded irrigation water saving of over 36% compared to the control method which demonstrates how irrigation is done traditionally.

[...] Read more.
Accident Response Time Enhancement Using Drones: A Case Study in Najm for Insurance Services

By Salma M. Elhag Ghadi H. Shaheen Fatmah H. Alahmadi

DOI: https://doi.org/10.5815/ijitcs.2023.06.01, Pub. Date: 8 Dec. 2023

One of the main reasons for mortality among people is traffic accidents. The percentage of traffic accidents in the world has increased to become the third in the expected causes of death in 2020. In Saudi Arabia, there are more than 460,000 car accidents every year. The number of car accidents in Saudi Arabia is rising, especially during busy periods such as Ramadan and the Hajj season. The Saudi Arabia’s government is making the required efforts to lower the nations of car accident rate. This paper suggests a business process improvement for car accident reports handled by Najm in accordance with the Saudi Vision 2030. According to drone success in many fields (e.g., entertainment, monitoring, and photography), the paper proposes using drones to respond to accident reports, which will help to expedite the process and minimize turnaround time. In addition, the drone provides quick accident response and recording scenes with accurate results. The Business Process Management (BPM) methodology is followed in this proposal. The model was validated by comparing before and after simulation results which shows a significant impact on performance about 40% regarding turnaround time. Therefore, using drones can enhance the process of accident response with Najm in Saudi Arabia.

[...] Read more.
A Systematic Literature Review of Studies Comparing Process Mining Tools

By Cuma Ali Kesici Necmettin Ozkan Sedat Taskesenlioglu Tugba Gurgen Erdogan

DOI: https://doi.org/10.5815/ijitcs.2022.05.01, Pub. Date: 8 Oct. 2022

Process Mining (PM) and PM tool abilities play a significant role in meeting the needs of organizations in terms of getting benefits from their processes and event data, especially in this digital era. The success of PM initiatives in producing effective and efficient outputs and outcomes that organizations desire is largely dependent on the capabilities of the PM tools. This importance of the tools makes the selection of them for a specific context critical. In the selection process of appropriate tools, a comparison of them can lead organizations to an effective result. In order to meet this need and to give insight to both practitioners and researchers, in our study, we systematically reviewed the literature and elicited the papers that compare PM tools, yielding comprehensive results through a comparison of available PM tools. It specifically delivers tools’ comparison frequency, methods and criteria used to compare them, strengths and weaknesses of the compared tools for the selection of appropriate PM tools, and findings related to the identified papers' trends and demographics. Although some articles conduct a comparison for the PM tools, there is a lack of literature reviews on the studies that compare PM tools in the market. As far as we know, this paper presents the first example of a review in literature in this regard.

[...] Read more.