ISSN: 2074-904X (Print)
ISSN: 2074-9058 (Online)
DOI: https://doi.org/10.5815/ijisa
Website: https://www.mecs-press.org/ijisa
Published By: MECS Press
Frequency: 6 issues per year
Number(s) Available: 133
IJISA is committed to bridge the theory and practice of intelligent systems. From innovative ideas to specific algorithms and full system implementations, IJISA publishes original, peer-reviewed, and high quality articles in the areas of intelligent systems. IJISA is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of intelligent systems and applications.
IJISA has been abstracted or indexed by several world class databases: Scopus, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, ProQuest, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..
IJISA Vol. 16, No. 5, Oct. 2024
REGULAR PAPERS
Mushroom consumption and wild mushroom gathering are increasing in our country and in the world. Mushroom poisoning has an important place in food poisoning cases. Mushroom poisoning accounts for approximately 7% of poisoning cases in adults. Mushroom collection and consumption is common in many regions of our country. In this study, a deep learning based mobile application was developed to reduce the incidence of mushroom poisoning by taking a photo of a mushroom and determining the type and toxicity of the mushroom from the photo. This mobile application is called MushAPP. In the first phase of the study, 5150 mushroom images of 20 mushroom species were used to create the dataset. The dataset was then pre-processed and converted into a format that can be used by the deep learning algorithm. The mobile application side of the project was developed in Android Studio IDE environment. An artificial intelligence model was integrated into the designed mobile application. In the application, the type and toxicity status of the mushroom viewed from the mobile device camera are determined and presented to the user. The research findings were analyzed and it was determined that the accuracy rate of the application in detecting the mushroom species was 99.8%.
[...] Read more.This paper proposes a data-driven approximation of the Cumulative Distribution Function using the Finite Mixtures of the Cumulative Distribution Function of Logistic distribution. Since it is not possible to solve the logistic mixture model using the Maximum likelihood method, the mixture model is modeled to approximate the empirical cumulative distribution function using the computational intelligence algorithms. The Probability Density Function is obtained by differentiating the estimate of the Cumulative Distribution Function. The proposed technique estimates the Cumulative Distribution Function of different benchmark distributions. Also, the performance of the proposed technique is compared with the state-of-the-art kernel density estimator and the Gaussian Mixture Model. Experimental results on κ−μ distribution show that the proposed technique performs equally well in estimating the probability density function. In contrast, the proposed technique outperforms in estimating the cumulative distribution function. Also, it is evident from the experimental results that the proposed technique outperforms the state-of-the-art Gaussian Mixture model and kernel density estimation techniques with less training data.
[...] Read more.High blood pressure (BP) monitoring Blood pressure (BP) is one of the common cardiovascular diseases and therefore the early high blood pressure (hypertension) detection, management, and prevention are mandatory. One promising method of continuous, non-invasive blood pressure estimation is photoplethysmography (PPG). In this study, a novel method was proposed to introduce the AlexNet framework into the time-frequency domain for classification of BP levels based on PPG signals. The study was conducted using the publicly available Figshare dataset which offers PPG signals, and the blood pressure labels against them. Data balancing techniques were used to alleviate class imbalances. Preprocessing and Feature Extraction of PPG Signals. The PPG signals were preprocessed with noise filtering and signals were then transformed from 1D-time to image to facilitate robust feature extraction. The proposed classification model, based on AlexNet showed the best result, with 98.89% accuracy, recall, and precision, and 99.44% specificity. This model outperformed alternative models (VGG16, DenseNet, ResNet50, GoogleNet) for classifying BP levels into the JNC 7 report standard categories normotension, prehypertension and hypertension. This study has two primary contributions. Initially, it demonstrates the efficacy of AlexNet model to extract meaningful features from PPG signals by its hierarchical convolutional and max-pooling layers thereby enabling accurate classification of BP levels. This study underscores the potential of deep learning and PPG signals for developing a highly accurate and truly non-invasive BP monitoring system. In the second aspect, the study offers a systematic assessment and comparison of the proposed over other well-known deep-learning networks, presenting the effectiveness of the AlexNet-based one. These results are of critical importance in the development of novel non-invasive BP monitoring modalities and optimization of cardiovascular health managements and personalized health cares.
[...] Read more.Adversarial attacks can be extremely dangerous, particularly in scenarios where the precision of facial expression identification is of utmost importance. Hiring adversarial training methods proves effective in mitigating these threats. Although effective, this technique requires large computing resources. This study aims to strengthen deep learning model resilience against adversarial attacks while optimizing performance and resource efficiency. Our proposed method uses adversarial training techniques to create adversarial examples, which are permanently stored as a separate dataset. This strategy helps the model learn and enhances its resilience to adversarial attacks. This study also evaluates models by subjecting them to adversarial attacks, such as the One Pixel Attack and the Fast Gradient Sign Method, to identify any potential vulnerabilities. Moreover, we use two different model architectures to see how well they are protected against adversarial attacks. It compared their performances to determine the best model for making systems more resistant while still maintaining good performance. The findings show that the combination of the proposed adversarial training technique and an efficient model architecture outcome in increased resistance to adversarial attacks. This also improves the reliability of the model and saves more resources for computation. This is evidenced by the high accuracy results achieved at 98.81% accuracy on the CK+ datasets. The adversarial training technique proposed in this study offers an efficient alternative to overcome the limitations of computational resources. This fortifies the model against adversarial attacks, resulting in significant increases in model resilience without loss of performance.
[...] Read more.Governments worldwide are increasingly prioritizing early wildfire detection to safeguard lives, property, and the environment. Although CNN-based models have demonstrated exceptional performance in various computer vision applications, the evolving nature of wildfire images poses significant challenges for a single CNN-based model in wildfire detection. In this study, we addressed this issue by integrating and weighting the differential learning capabilities of three individual transfer learning models: InceptionV3, ResNet50, and VGG16. Experimental results show that the ensemble deep learning models significantly outperformed all single classifiers across all performance metrics. Both the ensemble and weighted ensemble deep learning models achieved 99.7% accuracy, 99.5% precision, 100% recall, 99.8% F1-score, 0.5%false positive rate, 0.0% false negative rate and 0.3% error rate. Additionally, these models reduced the error rate by 98%, 91%, and 40% compared to the error rates of ResNet50, InceptionV3, and VGG16 respectively. A false negative rate of 0% indicates that our proposed ensemble deep learning models identified and predicted all the wildfire instances present in the test set correctly without a single misclassification. This positions our proposed ensemble deep learning models as superior choices for reducing misclassifications in wildfire detection.
[...] Read more.In recent times, there has been a growing emphasis on adjusting communication strategies to foster strong customer relationships. This shift is driven by intensified competition, market maturation, and swift advancements in business technology. Consequently, companies have established call centers to efficiently handle customer support and fulfil customer inquiries. A pivotal aspect of enhancing service quality within these call centers involves accurately identifying customers during their interactions. The primary objective of this study is to introduce a methodology for identifying customers within call centers by analysing their voice characteristics. Voice authentication (VA) has gained prominence in critical security operations, including banking transactions and conversations within call centers. The susceptibility of automatic speaker verification systems (ASVs) to deceptive spoofing attacks has prompted the development of countermeasures (CMs). These countermeasures are designed to differentiate between authentic and fabricated speech. ASVs and CMs collectively constitute contemporary VA systems, positioned as robust access control mechanisms. To achieve this goal, various customer identification systems within call centers have been examined, along with an analysis of audio signal attributes. Ultimately, the manuscript presents a novel approach to customer identification through voice biometrics. Notably, this method excels in recognizing customers even when provided with limited voice data. Empirical findings demonstrate that the suggested speaker identity confirmation method outperforms alternative techniques utilizing different algorithms, exhibiting a higher recognition rate. The present research work is based on two important perspectives of the call centres: a. call center agents experience and b. customer experience. The data collected separately from customers and agents for understanding the effective usage of voice biometric system in call centres. The data represented and satisfies the effectiveness of voice biometric system from both the perspectives. From the data it is also cleared that, the implementation of voice biometric system in call centres still have long way to go but will be a major technological change for the industries worldwide.
[...] Read more.Cyberbullying is an intentional action of harassment along the complex domain of social media utilizing information technology online. This research experimented unsupervised associative approach on text mining technique to automatically find cyberbullying words, patterns and extract association rules from a collection of tweets based on the domain / frequent words. Furthermore, this research identifies the relationship between cyberbullying keywords with other cyberbullying words, thus generating knowledge discovery of different cyberbullying word patterns from unstructured tweets. The study revealed that the type of dominant frequent cyberbullying words are intelligence, personality, and insulting words that describe the behavior, appearance of the female victims and sex related words that humiliate female victims. The results of the study suggest that we can utilize unsupervised associative approached in text mining to extract important information from unstructured text. Further, applying association rules can be helpful in recognizing the relationship and meaning between keywords with other words, therefore generating knowledge discovery of different datasets from unstructured text.
[...] Read more.The Internet of Things (IoT) has extended the internet connectivity to reach not just computers and humans, but most of our environment things. The IoT has the potential to connect billions of objects simultaneously which has the impact of improving information sharing needs that result in improving our life. Although the IoT benefits are unlimited, there are many challenges facing adopting the IoT in the real world due to its centralized server/client model. For instance, scalability and security issues that arise due to the excessive numbers of IoT objects in the network. The server/client model requires all devices to be connected and authenticated through the server, which creates a single point of failure. Therefore, moving the IoT system into the decentralized path may be the right decision. One of the popular decentralization systems is blockchain. The Blockchain is a powerful technology that decentralizes computation and management processes which can solve many of IoT issues, especially security. This paper provides an overview of the integration of the blockchain with the IoT with highlighting the integration benefits and challenges. The future research directions of blockchain with IoT are also discussed. We conclude that the combination of blockchain and IoT can provide a powerful approach which can significantly pave the way for new business models and distributed applications.
[...] Read more.Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task. The performances obtained from these networks were evaluated in consideration of achieved recognition rates and training time.
[...] Read more.Stock market prediction has become an attractive investigation topic due to its important role in economy and beneficial offers. There is an imminent need to uncover the stock market future behavior in order to avoid investment risks. The large amount of data generated by the stock market is considered a treasure of knowledge for investors. This study aims at constructing an effective model to predict stock market future trends with small error ratio and improve the accuracy of prediction. This prediction model is based on sentiment analysis of financial news and historical stock market prices. This model provides better accuracy results than all previous studies by considering multiple types of news related to market and company with historical stock prices. A dataset containing stock prices from three companies is used. The first step is to analyze news sentiment to get the text polarity using naïve Bayes algorithm. This step achieved prediction accuracy results ranging from 72.73% to 86.21%. The second step combines news polarities and historical stock prices together to predict future stock prices. This improved the prediction accuracy up to 89.80%.
[...] Read more.The proliferation of Web-enabled devices, including desktops, laptops, tablets, and mobile phones, enables people to communicate, participate and collaborate with each other in various Web communities, viz., forums, social networks, blogs. Simultaneously, the enormous amount of heterogeneous data that is generated by the users of these communities, offers an unprecedented opportunity to create and employ theories & technologies that search and retrieve relevant data from the huge quantity of information available and mine for opinions thereafter. Consequently, Sentiment Analysis which automatically extracts and analyses the subjectivities and sentiments (or polarities) in written text has emerged as an active area of research. This paper previews and reviews the substantial research on the subject of sentiment analysis, expounding its basic terminology, tasks and granularity levels. It further gives an overview of the state- of – art depicting some previous attempts to study sentiment analysis. Its practical and potential applications are also discussed, followed by the issues and challenges that will keep the field dynamic and lively for years to come.
[...] Read more.Along with the growth of the Internet, social media usage has drastically expanded. As people share their opinions and ideas more frequently on the Internet and through various social media platforms, there has been a notable rise in the number of consumer phrases that contain sentiment data. According to reports, cyberbullying frequently leads to severe emotional and physical suffering, especially in women and young children. In certain instances, it has even been reported that sufferers attempt suicide. The bully may occasionally attempt to destroy any proof they believe to be on their side. Even if the victim gets the evidence, it will still be a long time before they get justice at that point. This work used OCR, NLP, and machine learning to detect cyberbullying in photos in order to design and execute a practical method to recognize cyberbullying from images. Eight classifier techniques are used to compare the accuracy of these algorithms against the BoW Model and the TF-IDF, two key features. These classifiers are used to understand and recognize bullying behaviors. Based on testing the suggested method on the cyberbullying dataset, it was shown that linear SVC after OCR and logistic regression perform better and achieve the best accuracy of 96 percent. This study aid in providing a good outline that shapes the methods for detecting online bullying from a screenshot with design and implementation details.
[...] Read more.Non-functional requirements define the quality attribute of a software application, which are necessary to identify in the early stage of software development life cycle. Researchers proposed automatic software Non-functional requirement classification using several Machine Learning (ML) algorithms with a combination of various vectorization techniques. However, using the best combination in Non-functional requirement classification still needs to be clarified. In this paper, we examined whether different combinations of feature extraction techniques and ML algorithms varied in the non-functional requirements classification performance. We also reported the best approach for classifying Non-functional requirements. We conducted the comparative analysis on a publicly available PROMISE_exp dataset containing labelled functional and Non-functional requirements. Initially, we normalized the textual requirements from the dataset; then extracted features through Bag of Words (BoW), Term Frequency and Inverse Document Frequency (TF-IDF), Hashing and Chi-Squared vectorization methods. Finally, we executed the 15 most popular ML algorithms to classify the requirements. The novelty of this work is the empirical analysis to find out the best combination of ML classifier with appropriate vectorization technique, which helps developers to detect Non-functional requirements early and take precise steps. We found that the linear support vector classifier and TF-IDF combination outperform any combinations with an F1-score of 81.5%.
[...] Read more.Climate change, a significant and lasting alteration in global weather patterns, is profoundly impacting the stability and predictability of global temperature regimes. As the world continues to grapple with the far-reaching effects of climate change, accurate and timely temperature predictions have become pivotal to various sectors, including agriculture, energy, public health and many more. Crucially, precise temperature forecasting assists in developing effective climate change mitigation and adaptation strategies. With the advent of machine learning techniques, we now have powerful tools that can learn from vast climatic datasets and provide improved predictive performance. This study delves into the comparison of three such advanced machine learning models—XGBoost, Support Vector Machine (SVM), and Random Forest—in predicting daily maximum and minimum temperatures using a 45-year dataset of Visakhapatnam airport. Each model was rigorously trained and evaluated based on key performance metrics including training loss, Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R2 score, Mean Absolute Percentage Error (MAPE), and Explained Variance Score. Although there was no clear dominance of a single model across all metrics, SVM and Random Forest showed slightly superior performance on several measures. These findings not only highlight the potential of machine learning techniques in enhancing the accuracy of temperature forecasting but also stress the importance of selecting an appropriate model and performance metrics aligned with the requirements of the task at hand. This research accomplishes a thorough comparative analysis, conducts a rigorous evaluation of the models, highlights the significance of model selection.
[...] Read more.This document presents two developed methods for solving the classification task of medical implant materials based on the compatible use of the Wiener Polynomial and SVM. The high accuracy of the proposed methodology for solving this task are experimentally confirmed. A comparison of the proposed methods with existing ones: Logistic Regression; Linear SVC; Random Forest; SVC (linear kernel); SVC (RBF kernel); Random Forest + Wiener Polynomial is carried out. The duration of training of all methods that described in work is investigated. The article presents the visualization of all method results for solving this task.
[...] Read more.There is an increase in death rate yearly as a result of heart diseases. One of the major factors that cause this increase is misdiagnoses on the part of medical doctors or ignorance on the part of the patient. Heart diseases can be described as any kind of disorder that affects the heart. In this research work, causes of heart diseases, the complications and the remedies for the diseases have been considered. An intelligent system which can diagnose heart diseases has been implemented. This system will prevent misdiagnosis which is the major error that may occur by medical doctors. The dataset of statlog heart disease has been used to carry out this experiment. The dataset comprises attributes of patients diagnosed for heart diseases. The diagnosis was used to confirm whether heart disease is present or absent in the patient. The datasets were obtained from the UCI Machine Learning. This dataset was divided into training, validation set and testing set, to be fed into the network. The intelligent system was modeled on feed forward multilayer perceptron, and support vector machine. The recognition rate obtained from these models were later compared to ascertain the best model for the intelligent system due to its significance in medical field. The results obtained are 85%, 87.5% for feedforward multilayer perceptron, and support vector machine respectively. From this experiment we discovered that support vector machine is the best network for the diagnosis of heart disease.
[...] Read more.Cyberbullying is an intentional action of harassment along the complex domain of social media utilizing information technology online. This research experimented unsupervised associative approach on text mining technique to automatically find cyberbullying words, patterns and extract association rules from a collection of tweets based on the domain / frequent words. Furthermore, this research identifies the relationship between cyberbullying keywords with other cyberbullying words, thus generating knowledge discovery of different cyberbullying word patterns from unstructured tweets. The study revealed that the type of dominant frequent cyberbullying words are intelligence, personality, and insulting words that describe the behavior, appearance of the female victims and sex related words that humiliate female victims. The results of the study suggest that we can utilize unsupervised associative approached in text mining to extract important information from unstructured text. Further, applying association rules can be helpful in recognizing the relationship and meaning between keywords with other words, therefore generating knowledge discovery of different datasets from unstructured text.
[...] Read more.Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task. The performances obtained from these networks were evaluated in consideration of achieved recognition rates and training time.
[...] Read more.Stock market prediction has become an attractive investigation topic due to its important role in economy and beneficial offers. There is an imminent need to uncover the stock market future behavior in order to avoid investment risks. The large amount of data generated by the stock market is considered a treasure of knowledge for investors. This study aims at constructing an effective model to predict stock market future trends with small error ratio and improve the accuracy of prediction. This prediction model is based on sentiment analysis of financial news and historical stock market prices. This model provides better accuracy results than all previous studies by considering multiple types of news related to market and company with historical stock prices. A dataset containing stock prices from three companies is used. The first step is to analyze news sentiment to get the text polarity using naïve Bayes algorithm. This step achieved prediction accuracy results ranging from 72.73% to 86.21%. The second step combines news polarities and historical stock prices together to predict future stock prices. This improved the prediction accuracy up to 89.80%.
[...] Read more.Non-functional requirements define the quality attribute of a software application, which are necessary to identify in the early stage of software development life cycle. Researchers proposed automatic software Non-functional requirement classification using several Machine Learning (ML) algorithms with a combination of various vectorization techniques. However, using the best combination in Non-functional requirement classification still needs to be clarified. In this paper, we examined whether different combinations of feature extraction techniques and ML algorithms varied in the non-functional requirements classification performance. We also reported the best approach for classifying Non-functional requirements. We conducted the comparative analysis on a publicly available PROMISE_exp dataset containing labelled functional and Non-functional requirements. Initially, we normalized the textual requirements from the dataset; then extracted features through Bag of Words (BoW), Term Frequency and Inverse Document Frequency (TF-IDF), Hashing and Chi-Squared vectorization methods. Finally, we executed the 15 most popular ML algorithms to classify the requirements. The novelty of this work is the empirical analysis to find out the best combination of ML classifier with appropriate vectorization technique, which helps developers to detect Non-functional requirements early and take precise steps. We found that the linear support vector classifier and TF-IDF combination outperform any combinations with an F1-score of 81.5%.
[...] Read more.Along with the growth of the Internet, social media usage has drastically expanded. As people share their opinions and ideas more frequently on the Internet and through various social media platforms, there has been a notable rise in the number of consumer phrases that contain sentiment data. According to reports, cyberbullying frequently leads to severe emotional and physical suffering, especially in women and young children. In certain instances, it has even been reported that sufferers attempt suicide. The bully may occasionally attempt to destroy any proof they believe to be on their side. Even if the victim gets the evidence, it will still be a long time before they get justice at that point. This work used OCR, NLP, and machine learning to detect cyberbullying in photos in order to design and execute a practical method to recognize cyberbullying from images. Eight classifier techniques are used to compare the accuracy of these algorithms against the BoW Model and the TF-IDF, two key features. These classifiers are used to understand and recognize bullying behaviors. Based on testing the suggested method on the cyberbullying dataset, it was shown that linear SVC after OCR and logistic regression perform better and achieve the best accuracy of 96 percent. This study aid in providing a good outline that shapes the methods for detecting online bullying from a screenshot with design and implementation details.
[...] Read more.Addressing scheduling problems with the best graph coloring algorithm has always been very challenging. However, the university timetable scheduling problem can be formulated as a graph coloring problem where courses are represented as vertices and the presence of common students or teachers of the corresponding courses can be represented as edges. After that, the problem stands to color the vertices with lowest possible colors. In order to accomplish this task, the paper presents a comparative study of the use of graph coloring in university timetable scheduling, where five graph coloring algorithms were used: First Fit, Welsh Powell, Largest Degree Ordering, Incidence Degree Ordering, and DSATUR. We have taken the Military Institute of Science and Technology, Bangladesh as a test case. The results show that the Welsh-Powell algorithm and the DSATUR algorithm are the most effective in generating optimal schedules. The study also provides insights into the limitations and advantages of using graph coloring in timetable scheduling and suggests directions for future research with the use of these algorithms.
[...] Read more.This article presents a new approach for image recognition that proposes to combine Conical Radon Transform (CRT) and Convolutional Neural Networks (CNN).
In order to evaluate the performance of this approach for pattern recognition task, we have built a Radon descriptor enhancing features extracted by linear, circular and parabolic RT. The main idea consists in exploring the use of Conic Radon transform to define a robust image descriptor. Specifically, the Radon transformation is initially applied on the image. Afterwards, the extracted features are combined with image and then entered as an input into the convolutional layers. Experimental evaluation demonstrates that our descriptor which joins together extraction of features of different shapes and the convolutional neural networks achieves satisfactory results for describing images on public available datasets such as, ETH80, and FLAVIA. Our proposed approach recognizes objects with an accuracy of 96 % when tested on the ETH80 dataset. It also has yielded competitive accuracy than state-of-the-art methods when tested on the FLAVIA dataset with accuracy of 98 %. We also carried out experiments on traffic signs dataset GTSBR. We investigate in this work the use of simple CNN models to focus on the utility of our descriptor. We propose a new lightweight network for traffic signs that does not require a large number of parameters. The objective of this work is to achieve optimal results in terms of accuracy and to reduce network parameters. This approach could be adopted in real time applications. It classified traffic signs with high accuracy of 99%.
Timing-critical path analysis is one of the most significant terms for the VLSI designer. For the formal verification of any kinds of digital chip, static timing analysis (STA) plays a vital role to check the potentiality and viability of the design procedures. This indicates the timing status between setup and holding times required with respect to the active edge of the clock. STA can also be used to identify time sensitive paths, simulate path delays, and assess Register transfer level (RTL) dependability. Four types of Static Random Access Memory (SRAM) controllers in this paper are used to handle with the complexities of digital circuit timing analysis at the logic level. Different STA parameters such as slack, clock skew, data latency, and multiple clock frequencies are investigated here in their node-to-node path analysis for diverse SRAM controllers. Using phase lock loop (ALTPLL), single clock and dual clock are used to get the response of these controllers. For four SRAM controllers, the timing analysis shows that no data violation exists for single and dual clock with 50 MHz and 100 MHz frequencies. Result also shows that the slack for 100MHz is greater than that of 50MHz. Moreover, the clock skew value in our proposed design is lower than in the other three controllers because number of paths, number of states are reduced, and the slack value is higher than in 1st and 2nd controllers. In timing path analysis, slack time determines that the design is working at the desired frequency. Although 100MHz is faster than 50MHz, our proposed SRAM controller meets the timing requirements for 100MHz including the reduction of node to node data delay. Due to this reason, the proposed controller performs well compared to others in terms slack and clock skew.
[...] Read more.Alzheimer’s illness is an ailment of mind which results in mental confusion, forgetfulness and many other mental problems. It effects physical health of a person too. When treating a patient with Alzheimer's disease, a proper diagnosis is crucial, especially into earlier phases of condition as when patients are informed of the risk of the disease, they can take preventative steps before irreparable brain damage occurs. The majority of machine detection techniques are constrained by congenital (present at birth) data, however numerous recent studies have used computers for Alzheimer's disease diagnosis. The first stages of Alzheimer's disease can be diagnosed, but illness itself cannot be predicted since prediction is only helpful before it really manifests. Alzheimer’s has high risk symptoms that effects both physical and mental health of a patient. Risks include confusion, concentration difficulties and much more, so with such symptoms it becomes important to detect this disease at its early stages. Significance of detecting this disease is the patient gets a better chance of treatment and medication. Hence our research helps to detect the disease at its early stages. Particularly when used with brain MRI scans, deep learning has emerged as a popular tool for the early identification of AD. Here we are using a 12- layer CNN that has the layers four convolutional, two pooling, two flatten, one dense and three activation functions. As CNN is well-known for pattern detection and image processing, here, accuracy of our model is 97.80%.
[...] Read more.Skin cancer is among common and rapidly increasing human malignancies, which can be diagnosed visually. The diagnosis begins with preliminary medical screening and by dermoscopic examination, histopathological examination, and proceeding to the biopsy. This screening and diagnosis can be automated using machine learning tools and techniques. Artificial neural networks are helping a lot in medical diagnosis applications. In this research, skin images are classified into 7 different classes of skin cancer using deep learning methodology, then analyzed the results w.r.t to their respective precision, recall, support, and accuracy to find its practical applicability. This model is efficient in comparison to the detection of skin cancer with human eyes. Human eyes detection can be 79% accurate at most. Thus, having a scientific method of diagnosis can help the doctors and practitioners to accurately identify the cancer and its type. The model provides 80% accuracy on average for all 7 types of skin diseases, thus being more reliable than human eye examination. It will help the doctors to diagnose the skin diseases more confidently. The model has only 2 misclassified predictions for Basal cell carcinoma and Vascular lesions. However, Actinic keratosis diagnosis is most accurately predicted.
[...] Read more.