Ludvig Ilnitsky

Work place: National Aviation University/Professor emeritus, Kyiv, 03058, Ukraine

E-mail: ludvigilnickij@gmail.com

Website:

Research Interests: Microwave Measurements, Antenna Technology

Biography

Prof. Ludvig Ilnitsky, DSc, PhD, Professor emeritus of the National Aviation University, Kyiv, Ukraine. He worked many years as a Professor and the Department Head at the Electrodynamics Department. He is an expert in antennas, electromagnetic field theory, as well as elements of computer technology and automation devices. He is a full member of the International Academy of Informatization. He has more than 60 years of teaching experience and his areas of interest include antenna design, automation of RF measurements, and radio monitoring. A total number of his research publications is more than 500.

Author Articles
Metrological Complex for Electromagnetic Field Forming and Study of Electromagnetic Environment

By Ludvig Ilnitsky Olga Shcherbyna Leonid Sibruk Inna Mykhalchuk

DOI: https://doi.org/10.5815/ijigsp.2024.02.01, Pub. Date: 8 Apr. 2024

The article is devoted to the problems of constructing electromagnetic field with given parameters and both to the study of electromagnetic environment. For solving the problems, the corresponding theoretical material is presented. The functional relationships are considered that make it possible to construct the device for generating electromagnetic field with specified parameters in circular orthogonal polarization basis. The block diagram, which can ensure the specified field forming with acceptable errors are synthesized. Measurement of radiation characteristics, including polarization characteristics, requires the appropriate orientation of the receiving antenna to the direction of wave propagation. Corresponding algorithm and antenna system for this purpose is proposed. The study of the field polarization characteristics formed using the ring antenna elements is carried out. It is shown that in the broad frequency band, the ring elements can be replaced with spiral radiators, as well as that the antenna system for electromagnetic waves reception and their subsequent decomposition in circular polarization orthogonal basis, must contain at least eight antenna elements. Applied spiral flat antenna elements ensure the low level of cross-polarization due to the matched load on the spiral end, which is one of the conditions for successful polarization analysis. Besides, a device for polarization analysis of incident electromagnetic waves and the algorithm for measurement of the effective reflection area are considered.

[...] Read more.
Comparison of Circular and Linear Orthogonal Polarization Bases in Electromagnetic Field Parameters Measurement

By Ludvig Ilnitsky Olga Shcherbyna Felix Yanovsky Maksym Zaliskyi Oleksii Holubnychyi Olga Ivanets

DOI: https://doi.org/10.5815/ijigsp.2022.03.06, Pub. Date: 8 Jun. 2022

This article considers the peculiarities of using circular orthogonal polarization basis for measuring the parameters of an electromagnetic wave. In particular, the angle of inclination of the major axis of the polarization ellipse and the ellipticity coefficient are among measuring parameters. The main expressions for calculation of field parameters in circular and linear orthogonal polarization basis are developed and analyzed. The advantages of using the ring as a measuring antenna in comparison with symmetrical vibrators of the turnstile antenna are substantiated. The expressions obtained in the article for calculating the measurement errors of polarization parameters in a linear orthogonal polarization basis illustrate the multifactorial dependence of the measurement accuracy on the angular and amplitude parameters. In contrast to the linear polarization basis, in case of circular basis, the inclination angle of the polarization ellipse axis can be found by direct measurements of the phase shift, and the accuracy of measuring the ellipticity coefficient is affected only by the error of measuring the ratio of voltage amplitudes, which are proportional to the modules of the field strength vectors of the left and right directions of the circular polarization rotation. This provides better potential accuracy of measurement for the electromagnetic wave parameters when using circular polarization antennas and, correspondingly, more reasonable analysis in the circular orthogonal polarization basis.

[...] Read more.
Other Articles