International Journal of Image, Graphics and Signal Processing (IJIGSP)

ISSN: 2074-9074 (Print)

ISSN: 2074-9082 (Online)

DOI: https://doi.org/10.5815/ijigsp

Website: https://www.mecs-press.org/ijigsp

Published By: MECS Press

Frequency: 6 issues per year

Number(s) Available: 132

(IJIGSP) in Google Scholar Citations / h5-index

IJIGSP is committed to bridge the theory and practice of images, graphics, and signal processing. From innovative ideas to specific algorithms and full system implementations, IJIGSP publishes original, peer-reviewed, and high quality articles in the areas of images, graphics, and signal processing. IJIGSP is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of images, graphics, and signal processing applications.

 

IJIGSP has been abstracted or indexed by several world class databases: Scopus, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, ProQuest, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..

Latest Issue
Most Viewed
Most Downloaded

IJIGSP Vol. 16, No. 4, Aug. 2024

REGULAR PAPERS

Image Analysis of Impurity in Machine-harvested Cotton Based Machine Vision

By Mingjie LI Vladimir Y. Mariano

DOI: https://doi.org/10.5815/ijigsp.2024.04.01, Pub. Date: 8 Aug. 2024

The mechanization rate of cotton picking continues to increase with the continuous improvement and development of China's agricultural modernization level. However, when picking cotton, the machine cannot distinguish between cotton fibers and impurities well, resulting in a certain gap in impurity content compared to manually picked cotton. This paper combines machine vision and image processing technology to adopt an improved Canny-based impurity image processing algorithm. By performing light processing, selecting a color space, filtering images, and removing noise from machine-harvested cotton images, the suppression of virtual edges on impurity images allows for more accurate identification of impurities on the cotton surface. Finally, experimental details and results conclusively demonstrate the effectiveness of this method, providing a basis for detecting and classifying cotton impurities.

[...] Read more.
CRDL-PNet: An Efficient DeepLab-based Model for Segmenting Polyp Colonoscopy Images

By Anita Murmu Piyush Kumar Shrikant Malviya

DOI: https://doi.org/10.5815/ijigsp.2024.04.02, Pub. Date: 8 Aug. 2024

Colorectal cancers are the third-largest kind of cancer in the world. However, detecting and removing precursor polyps with adenomatous cells using optical colonoscopy images helps to prevent this type of cancer. Moreover, hyperplastic polyps are benign cancers; adenomatous polyps are more likely to grow into cancerous tumors. Therefore, the detection and segmentation of polyps provide further histological evaluation. However, the main challenge is the extensive range of infected polyp features inside the colon and the lack of contrast between normal and infected areas. To solve these issues, the proposed novel Customized ResNet50 with DeepLabV3Plus Network (CRDL-PNet) model provided a scheme for segmenting polyps from colonoscopy images. The customized ResNet50 extracted features from polyp colonoscopy images. Furthermore, Atrous Spatial Pyramid Pooling (ASPP) is used to handle scale variation during training and improve feature selection maps in an upsampling layer. Additionally, the Gateaux Derivatives (GD) approach is used to segment boundary boxes of polyp regions. The proposed method has been evaluated on four datasets, namely the Kvasir-SEG, ETIS-PolypLaribDB, CVC-ClinicDB, and CVC-ColonDB datasets, for segmenting and detecting polyps. The simulation results have been examined by evaluation metrics, such as accuracy, Intersection-Over-Union (IOU), mean IOU, precision, recall, F1-score, dice, Jaccard, and Mean Process Time per Frame (MPTF) for proper validation. The proposed scheme outperforms the existing State-Of-The-Arts (SOTA) model on the same polyp datasets.

[...] Read more.
Seamless Panoramic Image Stitching Based on Invariant Feature Detector and Image Blending

By Megha V. Rajkumar K. K.

DOI: https://doi.org/10.5815/ijigsp.2024.04.03, Pub. Date: 8 Aug. 2024

Image stitching is the method of creating a composite image from several images of the same scene. This paper addresses the issues of generating a seamless panoramic image from a series of photographs of the same scene by varying scale, orientation and illumination. A feature-based approach is proposed in this paper. Scale Invariant Feature Transform (SIFT) is used to detect key points in the image. SIFT is both a feature detector and descriptor. The common region between different images is identified by comparing the feature descriptors of each image. Brute-Force matcher with KNN algorithm is used for feature matching. The outliers in the matching features are eliminated by Random Sample Consensus (RANSAC) algorithm. To create seamless image, alpha blending operation is applied. Experiments are conducted on UDISD (Unsupervised Deep Image Stitching Data set). The overall performance of the proposed stitching method is evaluated based on metrics such as PSNR, SSIM, RMSE, MSE and UIQI, and the proposed stitching algorithm yields good result with seamless stitched image.

[...] Read more.
Fingerprint Image Fusion: A Cutting-edge Perspective on Gender Classification via Rotational Invariant Features

By Shivanand Gornale Abhijit Patil Khang Wen Goh Sathish Kumar Kruthi R

DOI: https://doi.org/10.5815/ijigsp.2024.04.04, Pub. Date: 8 Aug. 2024

In this cutting-edge technological milieu, fingerprints have become an alternative expression for the biometrics system. A fingerprint is one of the perceptible biometric modals which is predominantly utilized in almost all the security, and real-life applications. Fingerprints have many inherent rotational features that are mostly utilized for person recognition besides these features can also be utilized for the person gender classification. Thus, the proposed work is a novel algorithm which identifies the gender of an individual based on the fingerprint. The image fusion and feature level fusion technique are deliberated over the fingerprints with rotational invariant features. Experiments were carried on four state-of-the-art datasets and realized promising results by outperforming earlier outcomes.

[...] Read more.
50Hz Power Line Interference Removal from an Electrocardiogram Signal Using a VME-DWT-Based Frequency Extraction and Filtering Approach

By Pavan G. Malghan Malaya Kumar Hota

DOI: https://doi.org/10.5815/ijigsp.2024.04.05, Pub. Date: 8 Aug. 2024

Removing undesirable artifacts in electrocardiogram signals is essential for biological signal processing as the signal gets distorted and makes appropriate investigation challenging. A primary source of distortion affecting recordings is the 50Hz power line interference. To get a high-quality recording, we used a filtering method based on an efficient decomposition technique known as variational mode extraction. This approach is similar to the variational mode decomposition methodology but with a few alterations in mathematical computation. First, it extracts the noise efficiently in a specific frequency band. Then, we apply the discrete wavelet transform to the signal, employing soft thresholding. As a result, it eliminates the extra noise and filters the electrocardiogram signal. We evaluated the efficacy of our proposed method using an arrhythmia database. Furthermore, we compared recent decomposition methods on six random signals using signal-to-noise ratios, mean square errors, correlation coefficients, and other signal features. Our method also efficiently eliminates varying amplitude of powerline noise and finally outperforms decomposition strategies regarding noise reduction and processing complexity across all signal parameters.

[...] Read more.
Fetal Brain Planes Classification Using Deep Ensemble Transfer Learning from U-Net Segmented Fetal Neurosonography Images

By Md. Nazmul Hasan A. B. M. Aowlad Hossain

DOI: https://doi.org/10.5815/ijigsp.2024.04.06, Pub. Date: 8 Aug. 2024

Fetal neurosonography is potentially used to examine the fetal brain by scanning the trans-thalamic (TT), trans-cerebellum (TC), and trans-ventricular (TV) planes. Cross-sectional analysis of these planes is useful to assess the brain anatomy, development, and abnormality for intervention and treatment plans even at the postnatal stage. To minimize the errors and processing time involved in the traditional manual subjective approach, the automatic classification of fetal brain planes is crucial. In this study, a deep learning-based method for automatically categorizing fetal brain planes from ultrasound images is proposed and evaluated. Firstly, the brain region has been segmented from the fetal brain ultrasound images using U-Net to prepare an efficient data set for the classifier model. Then, an ensemble convolutional neural network (CNN) model including well-known Inception V3, ResNet50-V2, and DenseNet-201 models with max voting is designed to classify the segmented brain planes. 2019 fetal brain ultrasound images from a widely used publicly accessible experts-annotated dataset are used to evaluate the performance of the proposed framework. The obtained results analysis shows that using the segmented images as input improves the performance of the classifier from its raw form. The gradient class activation mapping (Grad-CAM) based inspection shows noteworthy localization capability of the last convolution layer. The ensemble model has also outperformed its individual model’s performance. The suggested categorization framework is satisfactory compared to related recent works, with a testing accuracy of 97.68%. The proposed framework for fetal brain plane classification is expected to be useful for clinical applications.

[...] Read more.
Computerized Acute Myeloid Leukemia Classification Using Hybrid Dilated DenseSqueeze Network from Peripheral B Stain Analysis

By Krishna Prasad Palli Edara Sreenivasa Reddy Chandra Sekharaiah K.

DOI: https://doi.org/10.5815/ijigsp.2024.04.07, Pub. Date: 8 Aug. 2024

In medical diagnosis, Artificial Intelligence (AI) has offered significant revolution, especially for cancers. Acute Myeloid Leukemia (AML) is a deadly blood cancer caused by the rapid growth of abnormal White Blood Cells (WBCs) in humans. Although AML classification is a popular area of research, existing detection methods utilize manual examination of microscopic blood samples, which includes high complexity and tedious. Therefore, this work presented a computerized deep learning model-based AML classification from peripheral blood stain images, which helps in earlier AML diagnosis. The processing steps followed in AML classification are Image Pre-processing, Localization of RoI (Region of Interest), Fusion-based Feature Extraction and Classification. First, the input image is pre-processed, which includes noise filtering, image resizing, and colour conversion. The noise in the image is filtered using normalized Gaussian filtering (NGF). Next, the image is resized into a standard size, and the RGB image is converted into CMYK colour space. Then, the RoI is identified using the Image Moment Localization (IML) technique. Next, the valuable multi-level dense features are extracted using DenseSqueeze Network, and multi-scale features are extracted using Dilated Convolution Spatial Pyramid Pooling (Dilated CSPP). Both these extracted features are fused using the element-wise summation. Finally, the Softmax classifier is used in the last layer to classify the classes of AML and the loss in the network is optimized using the Improved Artificial Fish Swarm (Improved AFS) algorithm. The proposed work results in 99% of accuracy, 98.5% of precision and 98.9% of F-score by using the AML-Cytomorphology LMU dataset.

[...] Read more.
Autism Spectrum Disorder Screening on Home Videos Using Deep Learning

By Anjali Singh Abha Rawat Mitali Laroia Seeja K. R.

DOI: https://doi.org/10.5815/ijigsp.2024.04.08, Pub. Date: 8 Aug. 2024

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulty in social interactions, communication, and repetitive behaviors. Protocols like ADOS (Autism Diagnostic Observation Schedule) and ADI-R (Autism Diagnostic Interview Revised) are used by experts to assess the subject’s behavior which is time-consuming. Over the decade, researchers have studied the application of various Machine Learning techniques for ASD diagnosis through facial feature analysis, eye movement tracking, questionnaire analysis, functional magnetic resonance imaging (fMRI) analysis, etc. However, these techniques are not helpful for the parent or guardian of the child to perform an initial screening. This research proposes a novel deep learning model to diagnose ASD using general videos of the subject performing some tasks with the parent/guardian. Since there is no publicly available dataset on ASD videos, a dataset is created by collecting the videos of autistic children performing some activities with parents/guardians from YouTube from different demographic locations. These videos are then converted to skeletal key points to extract the child's engagement and social interaction in a given task. The proposed CNN-LSTM model is trained on 80% of the collected videos and then tested on the remaining 20%. The experiment results on various combinations of pre-trained CNN models and LSTM/BiLSTM show that the proposed model can be used as an initial autism screening tool. Among the different combinations, the MobileNet and Bi-LSTM combo achieved the best test accuracy of 84.95% with 89% precision, recall and F1-score.

[...] Read more.
Image Denoising based on Enhanced Wavelet Global Thresholding Using Intelligent Signal Processing Algorithm

By Joseph Isabona Agbotiname Lucky Imoize Stephen Ojo

DOI: https://doi.org/10.5815/ijigsp.2023.05.01, Pub. Date: 8 Oct. 2023

Denoising is a vital aspect of image preprocessing, often explored to eliminate noise in an image to restore its proper characteristic formation and clarity. Unfortunately, noise often degrades the quality of valuable images, making them meaningless for practical applications. Several methods have been deployed to address this problem, but the quality of the recovered images still requires enhancement for efficient applications in practice. In this paper, a wavelet-based universal thresholding technique that possesses the capacity to optimally denoise highly degraded noisy images with both uniform and non-uniform variations in illumination and contrast is proposed. The proposed method, herein referred to as the modified wavelet-based universal thresholding (MWUT), compared to three state-of-the-art denoising techniques, was employed to denoise five noisy images. In order to appraise the qualities of the images obtained, seven performance indicators comprising the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Structural Content (SC), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Method (SSIM), Signal-to-Reconstruction-Error Ratio (SRER), Blind Spatial Quality Evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) were employed. The first five indicators – RMSE, MAE, SC, PSNR, SSIM, and SRER- are reference indicators, while the remaining two – NIQE and BRISQUE- are referenceless. For the superior performance of the proposed wavelet threshold algorithm, the SC, PSNR, SSIM, and SRER must be higher, while lower values of NIQE, BRISQUE, RMSE, and MAE are preferred. A higher and better value of PSNR, SSIM, and SRER in the final results shows the superior performance of our proposed MWUT denoising technique over the preliminaries. Lower NIQE, BRISQUE, RMSE, and MAE values also indicate higher and better image quality results using the proposed modified wavelet-based universal thresholding technique over the existing schemes. The modified wavelet-based universal thresholding technique would find practical applications in digital image processing and enhancement.

[...] Read more.
Evolutionary Image Enhancement Using Multi-Objective Genetic Algorithm

By Dhirendra Pal Singh Ashish Khare

DOI: https://doi.org/10.5815/ijigsp.2014.01.09, Pub. Date: 8 Nov. 2013

Image Processing is the art of examining, identifying and judging the significances of the Images. Image enhancement refers to attenuation, or sharpening, of image features such as edgels, boundaries, or contrast to make the processed image more useful for analysis. Image enhancement procedures utilize the computers to provide good and improved images for study by the human interpreters. In this paper we proposed a novel method that uses the Genetic Algorithm with Multi-objective criteria to find more enhance version of images. The proposed method has been verified with benchmark images in Image Enhancement. The simple Genetic Algorithm may not explore much enough to find out more enhanced image. In the proposed method three objectives are taken in to consideration. They are intensity, entropy and number of edgels. Proposed algorithm achieved automatic image enhancement criteria by incorporating the objectives (intensity, entropy, edges). We review some of the existing Image Enhancement technique. We also compared the results of our algorithms with another Genetic Algorithm based techniques. We expect that further improvements can be achieved by incorporating linear relationship between some other techniques.

[...] Read more.
Text Region Extraction: A Morphological Based Image Analysis Using Genetic Algorithm

By Dhirendra Pal Singh Ashish Khare

DOI: https://doi.org/10.5815/ijigsp.2015.02.06, Pub. Date: 8 Jan. 2015

Image analysis belongs to the area of computer vision and pattern recognition. These areas are also a part of digital image processing, where researchers have a great attention in the area of content retrieval information from various types of images having complex background, low contrast background or multi-spectral background etc. These contents may be found in any form like texture data, shape, and objects. Text Region Extraction as a content from an mage is a class of problems in Digital Image Processing Applications that aims to provides necessary information which are widely used in many fields medical imaging, pattern recognition, Robotics, Artificial intelligent Transport systems etc. To extract the text data information has becomes a challenging task. Since, Text extraction are very useful for identifying and analysis the whole information about image, Therefore, In this paper, we propose a unified framework by combining morphological operations and Genetic Algorithms for extracting and analyzing the text data region which may be embedded in an image by means of variety of texts: font, size, skew angle, distortion by slant and tilt, shape of the object which texts are on, etc. We have established our proposed methods on gray level image sets and make qualitative and quantitative comparisons with other existing methods and concluded that proposed method is better than others.

[...] Read more.
A Review of Self-supervised Learning Methods in the Field of Medical Image Analysis

By Jiashu Xu

DOI: https://doi.org/10.5815/ijigsp.2021.04.03, Pub. Date: 8 Aug. 2021

In the field of medical image analysis, supervised deep learning strategies have achieved significant development, while these methods rely on large labeled datasets. Self-Supervised learning (SSL) provides a new strategy to pre-train a neural network with unlabeled data. This is a new unsupervised learning paradigm that has achieved significant breakthroughs in recent years. So, more and more researchers are trying to utilize SSL methods for medical image analysis, to meet the challenge of assembling large medical datasets. To our knowledge, so far there still a shortage of reviews of self-supervised learning methods in the field of medical image analysis, our work of this article aims to fill this gap and comprehensively review the application of self-supervised learning in the medical field. This article provides the latest and most detailed overview of self-supervised learning in the medical field and promotes the development of unsupervised learning in the field of medical imaging. These methods are divided into three categories: context-based, generation-based, and contrast-based, and then show the pros and cons of each category and evaluates their performance in downstream tasks. Finally, we conclude with the limitations of the current methods and discussed the future direction.

[...] Read more.
Radio Receiver with Internal Compression of Input Signals Using a Dispersive Delay Line with Bandpass Filters

By Roman Pantyeyev Felix Yanovsky Andriy Mykolushko Volodymyr Shutko

DOI: https://doi.org/10.5815/ijigsp.2023.06.01, Pub. Date: 8 Dec. 2023

This article proposes a receiving device in which arbitrary input signals are subject to pre-detector processing for the subsequent implementation of the idea of compressing broadband modulated pulses with a matched filter to increase the signal-to-noise ratio and improve resolution. For this purpose, a model of a dispersive delay line is developed based on series-connected high-frequency time delay lines with taps in the form of bandpass filters, and analysis of this model is performed as a part of the radio receiving device with chirp signal compression. The article presents the mathematical description of the processes of formation and compression of chirp signals based on their matched filtering using the developed model and proposes the block diagram of a radio receiving device using the principle of compression of received signals. The proposed model can be implemented in devices for receiving unknown signals, in particular in passive radar. It also can be used for studying signal compression processes based on linear frequency modulation in traditional radar systems.

[...] Read more.
Enhancement of Mammographic Images Based on Wavelet Denoise and Morphological Contrast Enhancement

By Toan Le Van Liet Van Dang

DOI: https://doi.org/10.5815/ijigsp.2023.06.03, Pub. Date: 8 Dec. 2023

Breast cancer can be detected by mammograms, but not all of them are of high enough quality to be diagnosed by physicians or radiologists. Therefore, denoising and contrast enhancement in the image are issues that need to be addressed. There are numerous techniques to reduce noise and enhance contrast; the most popular of which incorporate spatial filters and histogram equalization. However, these techniques occasionally result in image blurring, particularly around the edges. The purpose of this article is to propose a technique that uses wavelet denoising in conjunction with top-hat and bottom-hat morphological transforms in the wavelet domain to reduce noise and image quality without distorting the image. Use five wavelet functions to test the proposed method: Haar, Daubechies (db3), Coiflet (coif3), Symlet (sym3), and Biorthogonal (bior1.3); each wavelet function employs levels 1 through 4 with four types of wavelet shrinkage: Bayer, Visu, SURE, and Normal. Three flat structuring elements in the shapes of a disk, a square, and a diamond with sizes 2, 5, 10, 15, 20, and 30 are utilized for top-hat and bottom-hat morphological transforms. To determine optimal parameters, the proposed method is applied to mdb001 mammogram (mini MIAS database) contaminated with Gaussian noise with SD, ? = 20. Based on the quality assessment quantities, the Symlet wavelet (sym3) at level 3, with Visu shrinkage and diamond structuring element size 5 produced the best results (MSE = 50.020, PSNR = 31.140, SSIM = 0.407, and SC = 1.008). The results demonstrate the efficacy of the proposed method.

[...] Read more.
Edibility Detection of Mushroom Using Ensemble Methods

By Nusrat Jahan Pinky S.M. Mohidul Islam Rafia Sharmin Alice

DOI: https://doi.org/10.5815/ijigsp.2019.04.05, Pub. Date: 8 Apr. 2019

Mushrooms are the most familiar delicious food which is cholesterol free as well as rich in vitamins and minerals. Though nearly 45,000 species of mushrooms have been known throughout the world, most of them are poisonous and few are lethally poisonous. Identifying edible or poisonous mushroom through the naked eye is quite difficult. Even there is no easy rule for edibility identification using machine learning methods that work for all types of data. Our aim is to find a robust method for identifying mushrooms edibility with better performance than existing works. In this paper, three ensemble methods are used to detect the edibility of mushrooms: Bagging, Boosting, and random forest. By using the most significant features, five feature sets are made for making five base models of each ensemble method. The accuracy is measured for ensemble methods using five both fixed feature set-based models and randomly selected feature set based models, for two types of test sets. The result shows that better performance is obtained for methods made of fixed feature sets-based models than randomly selected feature set-based models. The highest accuracy is obtained for the proposed model-based random forest for both test sets.

[...] Read more.
Fast Encryption Scheme for Secure Transmission of e-Healthcare Images

By Devisha Tiwari Bhaskar Mondal Anil Singh

DOI: https://doi.org/10.5815/ijigsp.2023.05.07, Pub. Date: 8 Oct. 2023

E-healthcare systems (EHSD), medical communications, digital imaging (DICOM) things have gained popularity over the past decade as they have become the top contenders for interoperability and adoption as a global standard for transmitting and communicating medical data. Security is a growing issue as EHSD and DICOM have grown more usable on any-to-any devices. The goal of this research is to create a privacy-preserving encryption technique for EHSD rapid communication with minimal storage. A new 2D logistic-sine chaotic map (2DLSCM) is used to design the proposed encryption method, which has been developed specifically for peer-to-peer communications via unique keys. Through the 3D Lorenz map which feeds the initial values to it, the 2DLSCM is able to provide a unique keyspace of 2544 bits (2^544bits) in each go of peer-to-peer paired transmission. Permutation-diffusion design is used in the encryption process, and 2DLSCM with 3DLorenz system are used to generate unique initial values for the keys. Without interfering with real-time medical transmission, the approach can quickly encrypt any EHSD image and DICOM objects. To assess the method, five distinct EHSD images of different kinds, sizes, and quality are selected. The findings indicate strong protection, speed, and scalability when compared to existing similar methods in literature.

[...] Read more.
An Efficient Brain Tumor Detection Algorithm Using Watershed & Thresholding Based Segmentation

By Anam Mustaqeem Engr Ali Javed Tehseen Fatima

DOI: https://doi.org/10.5815/ijigsp.2012.10.05, Pub. Date: 28 Sep. 2012

During past few years, brain tumor segmentation in magnetic resonance imaging (MRI) has become an emergent research area in the ?eld of medical imaging system. Brain tumor detection helps in finding the exact size and location of tumor. An efficient algorithm is proposed in this paper for tumor detection based on segmentation and morphological operators. Firstly quality of scanned image is enhanced and then morphological operators are applied to detect the tumor in the scanned image.

[...] Read more.
Breast Cancer Classification from Ultrasound Images using VGG16 Model based Transfer Learning

By A. B. M. Aowlad Hossain Jannatul Kamrun Nisha Fatematuj Johora

DOI: https://doi.org/10.5815/ijigsp.2023.01.02, Pub. Date: 8 Feb. 2023

Ultrasound based breast screening is gaining attention recently especially for dense breast. The technological advancement, cancer awareness, and cost-safety-availability benefits lead rapid rise of breast ultrasound market. The irregular shape, intensity variation, and additional blood vessels of malignant cancer are distinguishable in ultrasound images from the benign phase. However, classification of breast cancer using ultrasound images is a difficult process owing to speckle noise and complex textures of breast. In this paper, a breast cancer classification method is presented using VGG16 model based transfer learning approach. We have used median filter to despeckle the images. The layers for convolution process of the pretrained VGG16 model along with the maxpooling layers have been used as feature extractor and a proposed fully connected two layers deep neural network has been designed as classifier. Adam optimizer is used with learning rate of 0.001 and binary cross-entropy is chosen as the loss function for model optimization. Dropout of hidden layers is used to avoid overfitting. Breast Ultrasound images from two databases (total 897 images) have been combined to train, validate and test the performance and generalization strength of the classifier. Experimental results showed the training accuracy as 98.2% and testing accuracy as 91% for blind testing data with a reduced of computational complexity. Gradient class activation mapping (Grad-CAM) technique has been used to visualize and check the targeted regions localization effort at the final convolutional layer and found as noteworthy. The outcomes of this work might be useful for the clinical applications of breast cancer diagnosis.

[...] Read more.
Evolutionary Image Enhancement Using Multi-Objective Genetic Algorithm

By Dhirendra Pal Singh Ashish Khare

DOI: https://doi.org/10.5815/ijigsp.2014.01.09, Pub. Date: 8 Nov. 2013

Image Processing is the art of examining, identifying and judging the significances of the Images. Image enhancement refers to attenuation, or sharpening, of image features such as edgels, boundaries, or contrast to make the processed image more useful for analysis. Image enhancement procedures utilize the computers to provide good and improved images for study by the human interpreters. In this paper we proposed a novel method that uses the Genetic Algorithm with Multi-objective criteria to find more enhance version of images. The proposed method has been verified with benchmark images in Image Enhancement. The simple Genetic Algorithm may not explore much enough to find out more enhanced image. In the proposed method three objectives are taken in to consideration. They are intensity, entropy and number of edgels. Proposed algorithm achieved automatic image enhancement criteria by incorporating the objectives (intensity, entropy, edges). We review some of the existing Image Enhancement technique. We also compared the results of our algorithms with another Genetic Algorithm based techniques. We expect that further improvements can be achieved by incorporating linear relationship between some other techniques.

[...] Read more.
Image Denoising based on Enhanced Wavelet Global Thresholding Using Intelligent Signal Processing Algorithm

By Joseph Isabona Agbotiname Lucky Imoize Stephen Ojo

DOI: https://doi.org/10.5815/ijigsp.2023.05.01, Pub. Date: 8 Oct. 2023

Denoising is a vital aspect of image preprocessing, often explored to eliminate noise in an image to restore its proper characteristic formation and clarity. Unfortunately, noise often degrades the quality of valuable images, making them meaningless for practical applications. Several methods have been deployed to address this problem, but the quality of the recovered images still requires enhancement for efficient applications in practice. In this paper, a wavelet-based universal thresholding technique that possesses the capacity to optimally denoise highly degraded noisy images with both uniform and non-uniform variations in illumination and contrast is proposed. The proposed method, herein referred to as the modified wavelet-based universal thresholding (MWUT), compared to three state-of-the-art denoising techniques, was employed to denoise five noisy images. In order to appraise the qualities of the images obtained, seven performance indicators comprising the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Structural Content (SC), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Method (SSIM), Signal-to-Reconstruction-Error Ratio (SRER), Blind Spatial Quality Evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) were employed. The first five indicators – RMSE, MAE, SC, PSNR, SSIM, and SRER- are reference indicators, while the remaining two – NIQE and BRISQUE- are referenceless. For the superior performance of the proposed wavelet threshold algorithm, the SC, PSNR, SSIM, and SRER must be higher, while lower values of NIQE, BRISQUE, RMSE, and MAE are preferred. A higher and better value of PSNR, SSIM, and SRER in the final results shows the superior performance of our proposed MWUT denoising technique over the preliminaries. Lower NIQE, BRISQUE, RMSE, and MAE values also indicate higher and better image quality results using the proposed modified wavelet-based universal thresholding technique over the existing schemes. The modified wavelet-based universal thresholding technique would find practical applications in digital image processing and enhancement.

[...] Read more.
A Review of Self-supervised Learning Methods in the Field of Medical Image Analysis

By Jiashu Xu

DOI: https://doi.org/10.5815/ijigsp.2021.04.03, Pub. Date: 8 Aug. 2021

In the field of medical image analysis, supervised deep learning strategies have achieved significant development, while these methods rely on large labeled datasets. Self-Supervised learning (SSL) provides a new strategy to pre-train a neural network with unlabeled data. This is a new unsupervised learning paradigm that has achieved significant breakthroughs in recent years. So, more and more researchers are trying to utilize SSL methods for medical image analysis, to meet the challenge of assembling large medical datasets. To our knowledge, so far there still a shortage of reviews of self-supervised learning methods in the field of medical image analysis, our work of this article aims to fill this gap and comprehensively review the application of self-supervised learning in the medical field. This article provides the latest and most detailed overview of self-supervised learning in the medical field and promotes the development of unsupervised learning in the field of medical imaging. These methods are divided into three categories: context-based, generation-based, and contrast-based, and then show the pros and cons of each category and evaluates their performance in downstream tasks. Finally, we conclude with the limitations of the current methods and discussed the future direction.

[...] Read more.
Text Region Extraction: A Morphological Based Image Analysis Using Genetic Algorithm

By Dhirendra Pal Singh Ashish Khare

DOI: https://doi.org/10.5815/ijigsp.2015.02.06, Pub. Date: 8 Jan. 2015

Image analysis belongs to the area of computer vision and pattern recognition. These areas are also a part of digital image processing, where researchers have a great attention in the area of content retrieval information from various types of images having complex background, low contrast background or multi-spectral background etc. These contents may be found in any form like texture data, shape, and objects. Text Region Extraction as a content from an mage is a class of problems in Digital Image Processing Applications that aims to provides necessary information which are widely used in many fields medical imaging, pattern recognition, Robotics, Artificial intelligent Transport systems etc. To extract the text data information has becomes a challenging task. Since, Text extraction are very useful for identifying and analysis the whole information about image, Therefore, In this paper, we propose a unified framework by combining morphological operations and Genetic Algorithms for extracting and analyzing the text data region which may be embedded in an image by means of variety of texts: font, size, skew angle, distortion by slant and tilt, shape of the object which texts are on, etc. We have established our proposed methods on gray level image sets and make qualitative and quantitative comparisons with other existing methods and concluded that proposed method is better than others.

[...] Read more.
Breast Cancer Classification from Ultrasound Images using VGG16 Model based Transfer Learning

By A. B. M. Aowlad Hossain Jannatul Kamrun Nisha Fatematuj Johora

DOI: https://doi.org/10.5815/ijigsp.2023.01.02, Pub. Date: 8 Feb. 2023

Ultrasound based breast screening is gaining attention recently especially for dense breast. The technological advancement, cancer awareness, and cost-safety-availability benefits lead rapid rise of breast ultrasound market. The irregular shape, intensity variation, and additional blood vessels of malignant cancer are distinguishable in ultrasound images from the benign phase. However, classification of breast cancer using ultrasound images is a difficult process owing to speckle noise and complex textures of breast. In this paper, a breast cancer classification method is presented using VGG16 model based transfer learning approach. We have used median filter to despeckle the images. The layers for convolution process of the pretrained VGG16 model along with the maxpooling layers have been used as feature extractor and a proposed fully connected two layers deep neural network has been designed as classifier. Adam optimizer is used with learning rate of 0.001 and binary cross-entropy is chosen as the loss function for model optimization. Dropout of hidden layers is used to avoid overfitting. Breast Ultrasound images from two databases (total 897 images) have been combined to train, validate and test the performance and generalization strength of the classifier. Experimental results showed the training accuracy as 98.2% and testing accuracy as 91% for blind testing data with a reduced of computational complexity. Gradient class activation mapping (Grad-CAM) technique has been used to visualize and check the targeted regions localization effort at the final convolutional layer and found as noteworthy. The outcomes of this work might be useful for the clinical applications of breast cancer diagnosis.

[...] Read more.
Edibility Detection of Mushroom Using Ensemble Methods

By Nusrat Jahan Pinky S.M. Mohidul Islam Rafia Sharmin Alice

DOI: https://doi.org/10.5815/ijigsp.2019.04.05, Pub. Date: 8 Apr. 2019

Mushrooms are the most familiar delicious food which is cholesterol free as well as rich in vitamins and minerals. Though nearly 45,000 species of mushrooms have been known throughout the world, most of them are poisonous and few are lethally poisonous. Identifying edible or poisonous mushroom through the naked eye is quite difficult. Even there is no easy rule for edibility identification using machine learning methods that work for all types of data. Our aim is to find a robust method for identifying mushrooms edibility with better performance than existing works. In this paper, three ensemble methods are used to detect the edibility of mushrooms: Bagging, Boosting, and random forest. By using the most significant features, five feature sets are made for making five base models of each ensemble method. The accuracy is measured for ensemble methods using five both fixed feature set-based models and randomly selected feature set based models, for two types of test sets. The result shows that better performance is obtained for methods made of fixed feature sets-based models than randomly selected feature set-based models. The highest accuracy is obtained for the proposed model-based random forest for both test sets.

[...] Read more.
Retinal Image Segmentation for Diabetic Retinopathy Detection using U-Net Architecture

By Swapnil V. Deshmukh Apash Roy Pratik Agrawal

DOI: https://doi.org/10.5815/ijigsp.2023.01.07, Pub. Date: 8 Feb. 2023

Diabetic retinopathy is one of the most serious eye diseases and can lead to permanent blindness if not diagnosed early. The main cause of this is diabetes. Not every diabetic will develop diabetic retinopathy, but the risk of developing diabetes is undeniable. This requires the early diagnosis of Diabetic retinopathy. Segmentation is one of the approaches which is useful for detecting the blood vessels in the retinal image. This paper proposed the three models based on a deep learning approach for recognizing blood vessels from retinal images using region-based segmentation techniques. The proposed model consists of four steps preprocessing, Augmentation, Model training, and Performance measure. The augmented retinal images are fed to the three models for training and finally, get the segmented image. The proposed three models are applied on publically available data set of DRIVE, STARE, and HRF. It is observed that more thin blood vessels are segmented on the retinal image in the HRF dataset using model-3. The performance of proposed three models is compare with other state-of-art-methods of blood vessels segmentation of DRIVE, STARE, and HRF datasets.

[...] Read more.
A Review on Image Reconstruction through MRI k-Space Data

By Tanuj Kumar Jhamb Vinith Rejathalal V.K. Govindan

DOI: https://doi.org/10.5815/ijigsp.2015.07.06, Pub. Date: 8 Jun. 2015

Image reconstruction is the process of generating an image of an object from the signals captured by the scanning machine. Medical imaging is an interdisciplinary field combining physics, biology, mathematics and computational sciences. This paper provides a complete overview of image reconstruction process in MRI (Magnetic Resonance Imaging). It reviews the computational aspect of medical image reconstruction. MRI is one of the commonly used medical imaging techniques. The data collected by MRI scanner for image reconstruction is called the k-space data. For reconstructing an image from k-space data, there are various algorithms such as Homodyne algorithm, Zero Filling method, Dictionary Learning, and Projections onto Convex Set method. All the characteristics of k-space data and MRI data collection technique are reviewed in detail. The algorithms used for image reconstruction discussed in detail along with their pros and cons. Various modern magnetic resonance imaging techniques like functional MRI, diffusion MRI have also been introduced. The concepts of classical techniques like Expectation Maximization, Sensitive Encoding, Level Set Method, and the recent techniques such as Alternating Minimization, Signal Modeling, and Sphere Shaped Support Vector Machine are also reviewed. It is observed that most of these techniques enhance the gradient encoding and reduce the scanning time. Classical algorithms provide undesirable blurring effect when the degree of phase variation is high in partial k-space. Modern reconstructions algorithms such as Dictionary learning works well even with high phase variation as these are iterative procedures.

[...] Read more.
Real-Time Video based Human Suspicious Activity Recognition with Transfer Learning for Deep Learning

By Indhumathi .J Balasubramanian .M Balasaigayathri .B

DOI: https://doi.org/10.5815/ijigsp.2023.01.05, Pub. Date: 8 Feb. 2023

Nowadays, the primary concern of any society is providing safety to an individual. It is very hard to recognize the human behaviour and identify whether it is suspicious or normal. Deep learning approaches paved the way for the development of various machine learning and artificial intelligence. The proposed system detects real-time human activity using a convolutional neural network. The objective of the study is to develop a real-time application for Activity recognition using with and without transfer learning methods. The proposed system considers criminal, suspicious and normal categories of activities. Differentiate suspicious behaviour videos are collected from different peoples(men/women). This proposed system is used to detect suspicious activities of a person. The novel 2D-CNN, pre-trained VGG-16 and ResNet50 is trained on video frames of human activities such as normal and suspicious behaviour. Similarly, the transfer learning in VGG16 and ResNet50 is trained using human suspicious activity datasets. The results show that the novel 2D-CNN, VGG16, and ResNet50 without transfer learning achieve accuracy of 98.96%, 97.84%, and 99.03%, respectively. In Kaggle/real-time video, the proposed system employing 2D-CNN outperforms the pre-trained model VGG16. The trained model is used to classify the activity in the real-time captured video. The performance obtained on ResNet50 with transfer learning accuracy of 99.18% is higher than VGG16 transfer learning accuracy of 98.36%. 

[...] Read more.
Deep Learning Based Autonomous Real-Time Traffic Sign Recognition System for Advanced Driver Assistance

By Sithmini Gunasekara Dilshan Gunarathna Maheshi B. Dissanayake Supavadee Aramith Wazir Muhammad

DOI: https://doi.org/10.5815/ijigsp.2022.06.06, Pub. Date: 8 Dec. 2022

Deep learning (DL) architectures are becoming increasingly popular in modern traffic systems and self-driven vehicles owing to their high efficiency and accuracy. Emerging technological advancements and the availability of large databases have made a favorable impact on such improvements. In this study, we present a traffic sign recognition system based on novel DL architectures, trained and tested on a locally collected traffic sign database. Our approach includes two stages; traffic sign identification from live video feed, and classification of each sign. The sign identification model was implemented with YOLO architecture and the classification model was implemented with Xception architecture. The input video feed for these models were collected using dashboard camera recordings. The classification model has been trained with the German Traffic Sign Recognition Benchmark dataset as well for comparison. Final accuracy of classification for the local dataset was 96.05% while the standard dataset has given an accuracy of 92.11%. The final model is a combination of the detection and classification algorithms and it is able to successfully detect and classify traffic signs from an input video feed within an average detection time of 4.5fps

[...] Read more.