IJIGSP Vol. 16, No. 5, 8 Oct. 2024
Cover page and Table of Contents: PDF (size: 925KB)
PDF (925KB), PP.75-90
Views: 0 Downloads: 0
Cyclone Detection, Remote Sensing, Image Transformation, Image Processing, Adaptive Threshold, Infrared Satellite Imaging
Cyclones, with their high-speed winds and enormous quantities of rainfall, represent severe threats to global coastal regions. The ability to quickly and accurately identify cyclonic cloud formations is critical for the effective deployment of disaster preparedness measures. Our study focuses on a unique technique for precise delineation of cyclonic cloud regions in satellite imagery, concentrating on images from the Indian weather satellite INSAT-3D. This novel approach manages to achieve considerable improvements in cyclone monitoring by leveraging the image capture capabilities of INSAT-3D. It introduces a refined image processing continuum that extracts cloud attributes from infrared imaging in a comprehensive manner. This includes transformations and normalization techniques, further augmenting the pursuit of accuracy. A key feature of the study's methodology is the use of an adaptive threshold to correct complications related to luminosity and contrast; this enhances the detection accuracy of the cyclonic cloud formations substantially. The study further improves the preciseness of cloud detection by employing a modified contour detection algorithm that operates based on predefined criteria. The methodology has been designed to be both flexible and adaptable, making it highly effective while dealing with a wide array of environmental conditions. The utilization of INSAT-3D satellite images maximizes the performing capability of the technique in various situational contexts.
Viraj R. Thakurwar, Rohit V. Ingole, Aditya A. Deshmukh, Rahul Agrawal, Chetan Dhule, Nekita Chavhan Morris, "Refining Cyclonic Cloud Analysis via INSAT-3D Satellite Imagery and Advanced Image Processing Techniques", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.16, No.5, pp. 75-90, 2024. DOI:10.5815/ijigsp.2024.05.06
[1]Zhang, C. -J., Luo, Q., Dai, L. -J., Ma, L. -M., & Lu, X. -Q. (2019). Intensity Estimation of Tropical Cyclones Using the Relevance Vector Machine From Infrared Satellite Image Data. Journal of Atmospheric Science, 12(3), 763-773. https://doi.org/10.1109/JSTARS.2019.2894654.
[2]Zhang, C. -J., Wang, X. -J., Ma, L. -M., & Lu, X. -Q. (2021). Tropical Cyclone Intensity Classification and Estimation Using Infrared Satellite Images With Deep Learning. Journal of Atmospheric Science, 14, 2070-2086. https://doi.org/10.1109/JSTARS.2021.3050767.
[3]Zhang, R., Liu, Q., & Hang, R. (2020). Tropical Cyclone Intensity Estimation Using Two-Branch Convolutional Neural Network From Infrared and Water Vapor Images. IEEE Geoscience and Remote Sensing Letters, 58(1), 586-597. https://doi.org/10.1109/TGRS.2019.2938204.
[4]Z. Chen and X. Yu, "A Novel Tensor Network for Tropical Cyclone Intensity Estimation," in IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 4, pp. 3226-3243, April 2021, doi: https://doi.org/10.1109/TGRS.2020.3017709.
[5]McNeely, T., Dalmasso, N., Wood, K. M., & Lee, A. B. (2020). Structural Forecasting for Tropical Cyclone Intensity Prediction: Providing Insight with Deep Learning. arXiv preprint arXiv:cs.LG.
[6]Boussioux, L. O., Zeng, C., Guénais, T., & Bertsimas, D. (2022). Hurricane Forecasting: A Novel Multimodal Machine Learning Framework. Weather and Forecasting, 37(6), 817–831.
[7]Tian, W., Huang, W., Yi, L., Wu, L., & Wang, C. (2020). A CNN-Based Hybrid Model for Tropical Cyclone Intensity Estimation in Meteorological Industry. IEEE Access, 8, 59158-59168. https://doi.org/10.1109/ACCESS.2020.2982772.
[8]Pradhan, R., Aygun, R. S., Maskey, M., Ramachandran, R., & Cecil, D. J. (2018). Tropical Cyclone Intensity Estimation Using a Deep Convolutional Neural Network. IEEE Transactions on Image Processing, 27(2), 692-702. https://doi.org/10.1109/TIP.2017.2766358.
[9]Maskey, M. et al. (2020). Deepti: Deep-Learning-Based Tropical Cyclone Intensity Estimation System. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4271-4281 https://doi.org/10.1109/JSTARS.2020.3011907.
[10]Alemany, S., Beltran, J., Perez, A., & Ganzfried, S. (2018). Predicting Hurricane Trajectories using a Recurrent Neural Network. arXiv preprint arXiv:cs.LG.
[11]Giffard-Roisin, S., Yang, M., Charpiat, G., Kumler Bonfanti, C., Kégl, B., & Monteleoni, C. (2020). Tropical Cyclone Track Forecasting Using Fused Deep Learning From Aligned Reanalysis Data. Frontiers in Big Data, 3(1), 1. doi: https://doi.org/10.3389/fdata.2020.00001.
[12]Lian, J., Dong, P., Zhang, Y., Pan, J., & Liu, K. (2020). A Novel Data-Driven Tropical Cyclone Track Prediction Model Based on CNN and GRU With Multi-Dimensional Feature Selection. IEEE Access, 8, 97114-97128. doi: https://doi.org/10.1109/ACCESS.2020.2992083.
[13]Kumar, S., Biswas, K., & Pandey, A. K. (2021). Track Prediction of Tropical Cyclones Using Long Short-Term Memory Network. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 251-257). NV, USA. doi: https://doi.org/10.1109/CCWC51732.2021.9376027.
[14]Wang, C., Xu, Q., Li, X., & Cheng, Y. (2020). CNN-Based Tropical Cyclone Track Forecasting from Satellite Infrared Images. In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium (pp. 5811-5814). Waikoloa, HI, USA. doi: https://doi.org/10.1109/IGARSS39084.2020.9324408.
[15]Zheng, G., Liu, J. G., Yang, J., & Li, X. (2019). Automatically Locate Tropical Cyclone Centers Using Top Cloud Motion Data Derived From Geostationary Satellite Images. IEEE Transactions on Geoscience and Remote Sensing, PP, 1–16.
[16]Xie, M., Li, Y., & Dong, S. (2022). A Deep-Learning-Based Fusion Approach for Global Cyclone Detection Using Multiple Remote Sensing Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 9613-9622. doi: https://doi.org/10.1109/JSTARS.2022.3219809.
[17]Liu, Z., Hao, K., Geng, X., Zou, Z., & Shi, Z. (2022). Dual-Branched Spatio-Temporal Fusion Network for Multihorizon Tropical Cyclone Track Forecast. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 3842-3852. doi: https://doi.org/10.1109/JSTARS.2022.3170299.
[18]Weyn, J. A., Durran, D. R., Caruana, R., & Cresswell-Clay, N. (2021). Sub-Seasonal Forecasting With a Large Ensemble of Deep- Learning Weather Prediction Models. Journal of Advances in Modeling Earth Systems, 13(7).
[19]Ko, J., Lee, K., Hwang, H., & Shin, K. (2022). Deep-Learning-Based Precipitation Nowcasting with Ground Weather Station Data and Radar Data. arXiv [physics.ao-ph].
[20]Pihrt, J., Raevskiy, R., Šimánek, P., & Choma, M. (2022). WeatherFusionNet: Predicting Precipitation from Satellite Data. arXiv [cs.CV].
[21]Seo, M., Kim, D., Shin, S., Kim, E., Ahn, S., & Choi, Y. (2022). Simple Baseline for Weather Forecasting Using Spatiotemporal Context Aggregation Network. arXiv [cs.CV].
[22]Šváb, P., Spodniak, M., Korba, P., Hovanec, M., & Al-Rabeei, S. (2020). Meteorological satellites and their impact on transport systems in the field of weather forecasting (pp. 225–228).
[23]Huang, F., Cheng, W., Wang, P., Wang, Z., & He, H. (2022). Meteorological Satellite Images Prediction Based on Deep Multi- scales Extrapolation Fusion. arXiv [cs.CV].
[24]Seo, M. et al. (2023). Intermediate and Future Frame Prediction of Geostationary Satellite Imagery With Warp and Refine Network. arXiv [cs.CV].
[25]Gopalakrishnan, D., & Chandrasekar, A. (2018). Improved 4-DVar Simulation of Indian Ocean Tropical Cyclones Using a Regional Model. IEEE Transactions on Geoscience and Remote Sensing, PP, 1–8.
[26]Piñeros, M., Ritchie, L., & Tyo, J. (2010). Detecting Tropical Cyclone Genesis From Remotely Sensed Infrared Image Data. IEEE Geoscience and Remote Sensing Letters, 7, 826–830.
[27]Subrahmanyam, K. V., Kumar, K. K., & Tourville, N. D. (2018). CloudSat Observations of Three-Dimensional Distribution of Cloud Types in Tropical Cyclones. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(2), 339-344. doi: 10.1109/JSTARS.2017.2786666.
[28]Zhang, D., Zhang, J.-H., Yao, F., & Shi, L. (2019). Observed Characteristics Change of Tropical Cyclones During Rapid Intensification Over Western North Pacific Using CloudSat Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, PP, 1–9.
[29]Zhao, Y., Shangguan, Z., Fan, W., Cao, Z., & Wang, J. (2020). U-Net for Satellite Image Segmentation: Improving the Weather Forecasting. In 2020 5th International Conference on Universal Village (UV) (pp. 1-6). Boston, MA, USA. doi: 10.1109/UV50937.2020.9426212.
[30]Alatalo, J., Sipola, T., & Rantonen, M. (2023). Improved Difference Images for Change Detection Classifiers in SAR Imagery Using Deep Learning. arXiv [cs.CV].
[31]"INSAT-3D | Meteorological & Oceanographic Satellite Data Archival Centre," www.mosdac.gov.in. Link.
[32]"Meteorological & Oceanographic Satellite Data Archival Centre | Space Applications Centre, ISRO," www.mosdac.gov.in. Link. (Accessed Aug. 03, 2023).
[33]Deshmukh, A. A., Sonar, S. D. B., Ingole, R. V., Agrawal, R., Dhule, C., Morris, N. C. Satellite Image Segmentation for Forest Fire Risk Detection using Gaussian Mixture Models. Applied Artificial Intelligence and Computing (2023) 2: 806-811. doi: https://doi.org/10.1109/ICAAIC56838.2023.10140399.