International Journal of Computer Network and Information Security (IJCNIS)

ISSN: 2074-9090 (Print)

ISSN: 2074-9104 (Online)

DOI: https://doi.org/10.5815/ijcnis

Website: https://www.mecs-press.org/ijcnis

Published By: MECS Press

Frequency: 6 issues per year

Number(s) Available: 131

(IJCNIS) in Google Scholar Citations / h5-index

IJCNIS is committed to bridge the theory and practice of computer network and information security. From innovative ideas to specific algorithms and full system implementations, IJCNIS publishes original, peer-reviewed, and high quality articles in the areas of computer network and information security. IJCNIS is well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of computer network, information security, and their applications.

 

IJCNIS has been abstracted or indexed by several world class databases: ScopusSCImago, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, VINITI, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, ProQuest, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..

Latest Issue
Most Viewed
Most Downloaded

IJCNIS Vol. 16, No. 3, Jun. 2024

REGULAR PAPERS

Auto-metric Graph Neural Network for Attack Detection on IoT-based Smart Environment and Secure Data Transmission using Advanced Wild Horse Standard Encryption Method

By Ranganath Yadawad Umakant P. Kulkarni Jafar A. Alzubi

DOI: https://doi.org/10.5815/ijcnis.2024.03.01, Pub. Date: 8 Jun. 2024

Smart cities (SCs) are being constructed with the huge placement of the Internet of Things (IoT). Real-time enhancements to life quality based on comfort and efficiency. The key concerns in most SCs that immediately impact network performance are security and privacy. Numerous approaches are proposed for secure data transmission, but the current methods do not provide high accuracy and it provide high computational time. To resolve these problems, an Auto-metric Graph Neural Network for Attack Detection and Secure Data Transmission using Optimized Enhanced Identity-Based Encryption in IoT (AGNN-AWHSE-ST-IoT) is proposed. Primarily, the input data is taken from the NSL-KDD dataset. The input data is gathered with the aid of NSL-KDD is pre-processed using three steps, crisp data conversion, splitting, and normalization. Then the Pre-processed input is fed into the Colour Harmony Algorithm (CHA) based feature selection to select the important features. After feature selection, the preferred features are given to the AGNN classifier. After classifying, the data is given to Enhanced Identity-Based Encryption (EIBE), and it is optimized using Wild Horse Optimizer (WHO) for transmitting the data more safely. The outcomes of the normal data are displayed using the LCD monitor. The AGNN-AWHSE-ST-IoT method is implemented in PYTHON. The AGNN-AWHSE-ST-IoT method attains 8.888%, 13.953%, 19.512% higher accuracy, 2.105%, 6.593%, 8.988% higher cumulative accuracy, 54.285%, 54.285%, 52.941% lower encryption time, 8.2%, 3.3%, 6.9% lower decryption time, 11.627%, 10.344%, 6.666% higher security level and 60.869%, 70% and 64% lower computational time than the existing approaches such as SBAS-ST-IoT, BDN-GWMNN-ST-IoT and DNN-LSTM-ST-IoT respectively.

[...] Read more.
Effect of Line-of-sight Channels on DC-biased Optical Filter Bank Multicarrier Visible Light Communication with Multiple LED Arrays

By Mohammed Ali Asban Rahmat Talib Mohammad Faiz Abdullah Mohammed S. M. Gismalla

DOI: https://doi.org/10.5815/ijcnis.2024.03.02, Pub. Date: 8 Jun. 2024

This paper investigates the impact of propagation delay and channel loss due to the use of multiple LED arrays in visible light communication (VLC) systems based on filter bank multicarrier (FBMC) modulation. FBMC offers greater spectral efficiency, and asynchronous transmission and is a promising alternative scheme to orthogonal frequency division modulation (OFDM). The proposed FBMC model is based on 4-quadrature amplitude modulation (QAM) and 16-QAM formats and uses 100 symbols and 600 input bits per symbol. In this paper, the VLC-FBMC system is designed based on the line-of-sight (LOS) model under the additive white Gaussian noise (AWGN) channel. Comparison analyses between different bit rates in terms of bit error rate (BER), best sampling point, and signal-to-noise ratio (SNR) requirement have been carried out to show the delay and loss effect on communication quality and system performance. The results demonstrate that the proposed FBMC model achieves a bit rate of up to 29.296 Mbit/s with a low BER of 10-3 and less SNR penalty in high QAM formats, demonstrating its potential as a viable alternative to OFDM for future VLC systems.

[...] Read more.
Cooperative MAC Protocol based on Best Data Rate (CMAC-DR)

By Nagesh R. M. N. Sree Rangaraju N. R. Kushar Gowda Vinayak Shekharappa Antin

DOI: https://doi.org/10.5815/ijcnis.2024.03.03, Pub. Date: 8 Jun. 2024

As wireless signals are broadcast in nature, which implies that, a broadcast communication purposive to a predetermined destination may be received by a non-intended intermediate station. Cooperative transference, which employ interposed stations to pass on the eavesdropped data to attain the contrast gains, has a substantial capability to revamp the channeling effectiveness in wireless systems. In this it is evident that having cooperation amid stations in a wireless systems can accomplish higher throughput with enhanced network lifetime. Proffered work bestows a model for  medium access layer called Cooperative MAC protocol based on optimal Data Rate (CMAC-DR). In the proffered work, stations with more data rate aid stations having lesser data rate in their communication by redirecting their congestion. In CMAC-DR model, utilizing the conveyance of eavesdropped information, potential helper stations with more data rate Send out Helper Ready To Send (HRTS), the stations with less data rate maintains a table, called Co-op table of potential helper stations, that can aid in its transmissions. During communication, the source station with low data rate chooses either transmitting by the way of a helper station, so that it lowers the end to end transference delay and increases the throughput or opt only direct transmission, if no potential helper is found or if CMAC-DR becomes an overhead. By analyzing varied simulated scenarios, CMAC-DR evaluates the elevation in the overall network lifetime, throughput and minimization of delay. The CMAC-DR protocol is unambiguous and in accordant with legacy 802.11 also when compared to this, we find improved performance in terms of delay throughput and network lifetime since data rate is considered as relay selection condition. 

[...] Read more.
Traitor Traceable and Revocation-oriented Attribute Based Encryption with Proxy Decryption for Cloud Devices

By G. Sravan Kumar A. Sri Krishna

DOI: https://doi.org/10.5815/ijcnis.2024.03.04, Pub. Date: 8 Jun. 2024

Cloud storage environment permits the data holders to store their private data on remote cloud computers. Ciphertext Policy Attribute Based Encryption (CP-ABE) is an advanced method that assigns fine-grained access control and provides data confidentiality for accessing the cloud data. CP-ABE methods with small attribute universe limit the practical application of CP-ABE as the public parameter length linearly increases with the number of attributes. Further, it is necessary to provide a way to perform complex calculations during decryption on outsourced devices. In addition, the state-of-art techniques found it difficult to trace the traitor as well as revoke their attribute due to the complexity of ciphertext updation. In this paper, a concrete construction of CP-ABE technique has been provided to address the above limitations. The proposed technique supports large attribute universe, proxy decryption, traitor traceability, attribute revocation and ciphertext updation. The proposed scheme is proven to be secure under random oracle model. Moreover, the experimental outcomes reveal that our scheme is more time efficient than the existing schemes in terms of computation cost.

[...] Read more.
Method for Constructing Neural Network Means for Recognizing Scenes of Political Extremism in Graphic Materials of Online Social Networks

By Ihor Tereikovskyi Rabah AlShboul Shynar Mussiraliyeva Liudmyla Tereikovska Kalamkas Bagitova Oleh Tereikovskyi Zhengbing Hu

DOI: https://doi.org/10.5815/ijcnis.2024.03.05, Pub. Date: 8 Jun. 2024

Countering the spread of calls for political extremism through graphic content on online social networks is becoming an increasingly pressing problem that requires the development of new technological solutions, since traditional approaches to countering are based on the results of recognizing destructive content only in text messages. Since in modern conditions neural network tools for analyzing graphic information are considered the most effective, it is assumed that it is advisable to use such tools for analyzing images and video materials in online social networks, taking into account the need to adapt them to the expected conditions of use, which are determined by the wide variability in the size of graphic content, the presence of typical interference, limited computing resources of recognition tools. Using this thesis, a method has been proposed that makes it possible to implement the construction of neural network recognition tools adapted to the specified conditions. For recognition, the author's neural network model was used, which, due to the reasonable determination of the architectural parameters of the low-resource convolutional neural network of the MobileNetV2 type and the recurrent neural network of the LSTM type, which makes up its structure, ensures high accuracy of recognition of scenes of political extremism both in static images and in video materials under limited computing conditions resources. A mechanism was used to adapt the input field of the neural network model to the variability of the size of graphic resources, which provides for scaling within acceptable limits of the input graphic resource and, if necessary, filling the input field with zeros. Levelling out typical noise is ensured by using advanced solutions in the method for correcting brightness, contrast and eliminating blur of local areas in images of online social networks. Neural network tools developed on the basis of the proposed method for recognizing scenes of political extremism in graphic materials of online social networks demonstrate recognition accuracy at the level of the most well-known neural network models, while ensuring a reduction in resource intensity by more than 10 times. This allows the use of less powerful equipment, increases the speed of content analysis, and also opens up prospects for the development of easily scalable recognition tools, which ultimately ensures an increase in security and a reduction in the spread of extremist content on online social networks. It is advisable to correlate the paths for further research with the introduction of the Attention mechanism into the neural network model used in the method, which will make it possible to increase the efficiency of neural network analysis of video materials.

[...] Read more.
Parameter Estimation of Cellular Communication Systems Models in Computational MATLAB Environment: A Systematic Solver-based Numerical Optimization Approaches

By Joseph Isabona Sayo A. Akinwumi Theophilus E. Arijaje Odesanya Ituabhor Agbotiname Lucky Imoize

DOI: https://doi.org/10.5815/ijcnis.2024.03.06, Pub. Date: 8 Jun. 2024

Model-based parameter estimation, identification, and optimisation play a dominant role in many aspects of physical and operational processes in applied sciences, engineering, and other related disciplines. The intricate task involves engaging and fitting the most appropriate parametric model with nonlinear or linear features to experimental field datasets priori to selecting the best optimisation algorithm with the best configuration. Thus, the task is usually geared towards solving a clear optimsation problem. In this paper, a systematic-stepwise approach has been employed to review and benchmark six numerical-based optimization algorithms in MATLAB computational Environment. The algorithms include the Gradient Descent (GRA), Levenberg-Marguardt (LEM), Quasi-Newton (QAN), Gauss-Newton (GUN), Nelda-Meald (NEM), and Trust-Region-Dogleg (TRD). This has been accomplished by engaging them to solve an intricate radio frequency propagation modelling and parametric estimation in connection with practical spatial signal data. The spatial signal data were obtained via real-time field drive test conducted around six eNodeBs transmitters, with case studies taken from different terrains where 4G LTE transmitters are operational. Accordingly, three criteria in connection with rate of convergence Results show that the approximate hessian-based QAN algorithm, followed by the LEM algorithm yielded the best results in optimizing and estimating the RF propagation models parameters. The resultant approach and output of this paper will be of countless assets in assisting the end-users to select the most preferable optimization algorithm to handle their respective intricate problems.

[...] Read more.
A Novel Privacy Preservation Scheme by Matrix Factorized Deep Autoencoder

By Pooja Choudhary Kanwal Garg

DOI: https://doi.org/10.5815/ijcnis.2024.03.07, Pub. Date: 8 Jun. 2024

Data transport entails substantial security to avoid unauthorized snooping as data mining yields important and quite often sensitive information that must be and can be secured using one of the myriad Data Privacy Preservation methods. This study aspires to provide new knowledge to the study of protecting personal information. The key contributions of the work are an imputation method for filling in missing data before learning item profiles and the optimization of the Deep Auto-encoded NMF with a customizable learning rate. We used Bayesian inference to assess imputation for data with 13%, 26%, and 52% missing at random. By correcting any inherent biases, the results of decomposition problems may be enhanced. As the statistical analysis tool, MAPE is used. The proposed approach is evaluated on the Wiki dataset and the traffic dataset, against state-of-the-art techniques including BATF, BGCP, BCPF, and modified PARAFAC, all of which use a Bayesian Gaussian tensor factorization. Using this approach, the MAPE index is decreased for data which avails privacy safeguards than its corresponding original forms.

[...] Read more.
Encrypted Access Mapping in a Distinctly Routed Optimized Immune System to Prevent DoS Attack Variants in VANET Architecture

By Rama Mercy. S. G. Padmavathi

DOI: https://doi.org/10.5815/ijcnis.2024.03.08, Pub. Date: 8 Jun. 2024

The use of vehicle ad hoc networks (VANET) is increasing, VANET is a network in which two or more vehicles communicate with each other. The VANET architecture is vulnerable to various attacks, such as DoS and DDoS attacks hence various strategies were previously employed to combat these attacks, but the presence of end-to-end transparency and N-to-1 mapping of different IP addresses create failure in the blockage and not able to determine the twelve variants of DDoS attacks hence a novel technique, Encrypted Access Hex-tuple Mapping Attack detection was proposed, which uses triple random hyperbolic encryption, which performs triple random encoding to encrypt traffic signals and obtains the public key by plotting random values in hyperbola to strengthen the access control in the middlebox and Deep auto sparse impasse NN is used to detect twelve variant DDoS attacks in the VANET architecture. Moreover, to provide immunity against attack, the existing approach uses various artificial immune systems to prevent DDoS attacks but the selection of positive and negative clusters generates too many indicator packets. Hence a novel technique, Stable Automatic Optimized Cache Routing proposed, which uses a Deep trust factorization NN to detect irrational nodes without requiring prior negotiation about local outliner factor and direct evidence by automatically extracting trust factors of each node to manage the packet flows and detecting transmission of dangerous malware files in the network to prevent various types of hybrid DDoS attacks at VANET architecture. The proposed model is implemented in NS-3 to detect and prevent hybrid DDoS attacks. 

[...] Read more.
Information Technology for the Operational Processing of Military Content for Commanders of Tactical Army Units

By Vitaliy Danylyk Victoria Vysotska Vasyl Andrunyk Dmytro Uhryn Yuriy Ushenko

DOI: https://doi.org/10.5815/ijcnis.2024.03.09, Pub. Date: 8 Jun. 2024

In the modern world, the military sphere occupies a very high place in the life of the country. At the same time, this area needs quick and accurate solutions. This decision can greatly affect the unfolding of events on the battlefield and indicate that they must be used carefully, using all possible means. During the war, the speed and importance of decisions are very important, and we note that the relevance of this topic is growing sharply. The purpose of the work is to create a comprehensive information system that facilitates the work of commanders of tactical units, which organizes the visualization and classification of aerial objects in real-time, the classification of objects for radio-technical intelligence, the structuring of military information and facilitates the perception of military information. The object of research/development is a phenomenon that creates a problematic problem, has the presence of slowing factors in the process of command and control, using teams of tactical links, which can slow down decision-making, as well as affect their correctness. The research/development aims to address emerging bottlenecks in the command-and-control process performed by tactical link teams, providing improved visualization, analysis and work with military data. The result of the work is an information system for processing military data to help commanders of tactical units. This system significantly improves on known officer assistance tools, although it includes a set of programs that have been used in parallel on an as-needed basis. Using modern information technologies and ease of use, the system covers problems that may arise for commanders. Also, each program included in the complex information system has its degree of innovation. The information system for structuring military information is distinguished by the possibility of use on any device. The information system for the visualization and clustering of aerial objects and the information system for the classification of objects for radio technical intelligence are distinguished by their component nature. This means that the application can use sources of input information and provides an API to use other processing information. Regarding the information system for integration into information materials, largely unknown terms and abbreviations are defined, so such solutions, cannot integrate the required data into real documents. Therefore, using this comprehensive information system, the command of tactical units will have the opportunity to improve the quality and achieve the command-and-control process.

[...] Read more.
Optimized Extreme Gradient Boosting with Remora Algorithm for Congestion Prediction in Transport Layer

By Ajay Kumar Naveen Hemrajani

DOI: https://doi.org/10.5815/ijcnis.2024.03.10, Pub. Date: 8 Jun. 2024

Transmission control protocol (TCP) is the most common protocol found in recent networks to maintain reliable communication. The most popular transport protocol in use today is TCP that cannot fully utilize the ability of the network because of the constraints of its conservative congestion control algorithm and favors reliability over timeliness. Despite congestion is the most frequent cause of lost packets, transmission defects can also result in packet loss. In response to packet loss, end-to-end congestion control mechanism in TCP limits the amount of remarkable, unacknowledged data segments that are permitted in the network. To overcome the drawback, Optimized Extreme Gradient Boosting Algorithm is proposed to predict the congestion. Initially, the data is collected and given to data preprocessing to improve the data quality. Min-Max normalization is used to normalize the data in the particular range and KNN-based missing value imputation is used to replace the missing values in the original data in the preprocessing section. Then the preprocessed data is fed into the Optimized Extreme Gradient Boosting Algorithm to predict the congestion. Remora optimization is used in the designed model for optimally selecting the learning rate to minimize the error for enhancing the prediction accuracy in machine learning. For validating the proposed model, the performance metrics attained by the proposed and existing model are compared. Accuracy, precision, recall and error values for the proposed methods are 96%, 97%, 96% and 3% values are obtained. Thus, the proposed optimized extreme gradient boosting with the remora algorithm for congestion prediction in the transport layer method is the best method than the existing algorithm.

[...] Read more.
D2D Communication Using Distributive Deep Learning with Coot Bird Optimization Algorithm

By Nethravathi H. M. Akhila S. Vinayakumar Ravi

DOI: https://doi.org/10.5815/ijcnis.2023.05.01, Pub. Date: 8 Oct. 2023

D2D (Device-to-device) communication has a major role in communication technology with resource and power allocation being a major attribute of the network. The existing method for D2D communication has several problems like slow convergence, low accuracy, etc. To overcome these, a D2D communication using distributed deep learning with a coot bird optimization algorithm has been proposed. In this work, D2D communication is combined with the Coot Bird Optimization algorithm to enhance the performance of distributed deep learning. Reducing the interference of eNB with the use of deep learning can achieve near-optimal throughput. Distributed deep learning trains the devices as a group and it works independently to reduce the training time of the devices. This model confirms the independent resource allocation with optimized power value and the least Bit Error Rate for D2D communication while sustaining the quality of services. The model is finally trained and tested successfully and is found to work for power allocation with an accuracy of 99.34%, giving the best fitness of 80%, the worst fitness value of 46%, mean value of 6.76 and 0.55 STD value showing better performance compared to the existing works.

[...] Read more.
Classification of HHO-based Machine Learning Techniques for Clone Attack Detection in WSN

By Ramesh Vatambeti Vijay Kumar Damera Karthikeyan H. Manohar M. Sharon Roji Priya C. M. S. Mekala

DOI: https://doi.org/10.5815/ijcnis.2023.06.01, Pub. Date: 8 Dec. 2023

Thanks to recent technological advancements, low-cost sensors with dispensation and communication capabilities are now feasible. As an example, a Wireless Sensor Network (WSN) is a network in which the nodes are mobile computers that exchange data with one another over wireless connections rather than relying on a central server. These inexpensive sensor nodes are particularly vulnerable to a clone node or replication assault because of their limited processing power, memory, battery life, and absence of tamper-resistant hardware. Once an attacker compromises a sensor node, they can create many copies of it elsewhere in the network that share the same ID. This would give the attacker complete internal control of the network, allowing them to mimic the genuine nodes' behavior. This is why scientists are so intent on developing better clone assault detection procedures. This research proposes a machine learning based clone node detection (ML-CND) technique to identify clone nodes in wireless networks. The goal is to identify clones effectively enough to prevent cloning attacks from happening in the first place. Use a low-cost identity verification process to identify clones in specific locations as well as around the globe. Using the Optimized Extreme Learning Machine (OELM), with kernels of ELM ideally determined through the Horse Herd Metaheuristic Optimization Algorithm (HHO), this technique safeguards the network from node identity replicas. Using the node identity replicas, the most reliable transmission path may be selected. The procedure is meant to be used to retrieve data from a network node. The simulation result demonstrates the performance analysis of several factors, including sensitivity, specificity, recall, and detection.

[...] Read more.
A Critical appraisal on Password based Authentication

By Amanpreet A. Kaur Khurram K. Mustafa

DOI: https://doi.org/10.5815/ijcnis.2019.01.05, Pub. Date: 8 Jan. 2019

There is no doubt that, even after the development of many other authentication schemes, passwords remain one of the most popular means of authentication. A review in the field of password based authentication is addressed, by introducing and analyzing different schemes of authentication, respective advantages and disadvantages, and probable causes of the ‘very disconnect’ between user and password mechanisms. The evolution of passwords and how they have deep-rooted in our life is remarkable. This paper addresses the gap between the user and industry perspectives of password authentication, the state of art of password authentication and how the most investigated topic in password authentication changed over time. The author’s tries to distinguish password based authentication into two levels ‘User Centric Design Level’ and the ‘Machine Centric Protocol Level’ under one framework. The paper concludes with the special section covering the ways in which password based authentication system can be strengthened on the issues which are currently holding-in the password based authentication.

[...] Read more.
Machine Learning-based Intrusion Detection Technique for IoT: Simulation with Cooja

By Ali H. Farea Kerem Kucuk

DOI: https://doi.org/10.5815/ijcnis.2024.01.01, Pub. Date: 8 Feb. 2024

The Internet of Things (IoT) is one of the promising technologies of the future. It offers many attractive features that we depend on nowadays with less effort and faster in real-time. However, it is still vulnerable to various threats and attacks due to the obstacles of its heterogeneous ecosystem, adaptive protocols, and self-configurations. In this paper, three different 6LoWPAN attacks are implemented in the IoT via Contiki OS to generate the proposed dataset that reflects the 6LoWPAN features in IoT. For analyzed attacks, six scenarios have been implemented. Three of these are free of malicious nodes, and the others scenarios include malicious nodes. The typical scenarios are a benchmark for the malicious scenarios for comparison, extraction, and exploration of the features that are affected by attackers. These features are used as criteria input to train and test our proposed hybrid Intrusion Detection and Prevention System (IDPS) to detect and prevent 6LoWPAN attacks in the IoT ecosystem. The proposed hybrid IDPS has been trained and tested with improved accuracy on both KoU-6LoWPAN-IoT and Edge IIoT datasets. In the proposed hybrid IDPS for the detention phase, the Artificial Neural Network (ANN) classifier achieved the highest accuracy among the models in both the 2-class and N-class. Before the accuracy improved in our proposed dataset with the 4-class and 2-class mode, the ANN classifier achieved 95.65% and 99.95%, respectively, while after the accuracy optimization reached 99.84% and 99.97%, respectively. For the Edge IIoT dataset, before the accuracy improved with the 15-class and 2-class modes, the ANN classifier achieved 95.14% and 99.86%, respectively, while after the accuracy optimized up to 97.64% and 99.94%, respectively. Also, the decision tree-based models achieved lightweight models due to their lower computational complexity, so these have an appropriate edge computing deployment. Whereas other ML models reach heavyweight models and are required more computational complexity, these models have an appropriate deployment in cloud or fog computing in IoT networks.

[...] Read more.
Social Engineering: I-E based Model of Human Weakness for Attack and Defense Investigations

By Wenjun Fan Kevin Lwakatare Rong Rong

DOI: https://doi.org/10.5815/ijcnis.2017.01.01, Pub. Date: 8 Jan. 2017

Social engineering is the attack aimed to manipulate dupe to divulge sensitive information or take actions to help the adversary bypass the secure perimeter in front of the information-related resources so that the attacking goals can be completed. Though there are a number of security tools, such as firewalls and intrusion detection systems which are used to protect machines from being attacked, widely accepted mechanism to prevent dupe from fraud is lacking. However, the human element is often the weakest link of an information security chain, especially, in a human-centered environment. In this paper, we reveal that the human psychological weaknesses result in the main vulnerabilities that can be exploited by social engineering attacks. Also, we capture two essential levels, internal characteristics of human nature and external circumstance influences, to explore the root cause of the human weaknesses. We unveil that the internal characteristics of human nature can be converted into weaknesses by external circumstance influences. So, we propose the I-E based model of human weakness for social engineering investigation. Based on this model, we analyzed the vulnerabilities exploited by different techniques of social engineering, and also, we conclude several defense approaches to fix the human weaknesses. This work can help the security researchers to gain insights into social engineering from a different perspective, and in particular, enhance the current and future research on social engineering defense mechanisms.

[...] Read more.
Statistical Techniques for Detecting Cyberattacks on Computer Networks Based on an Analysis of Abnormal Traffic Behavior

By Zhengbing Hu Roman Odarchenko Sergiy Gnatyuk Maksym Zaliskyi Anastasia Chaplits Sergiy Bondar Vadim Borovik

DOI: https://doi.org/10.5815/ijcnis.2020.06.01, Pub. Date: 8 Dec. 2020

Represented paper is currently topical, because of year on year increasing quantity and diversity of attacks on computer networks that causes significant losses for companies. This work provides abilities of such problems solving as: existing methods of location of anomalies and current hazards at networks, statistical methods consideration, as effective methods of anomaly detection and experimental discovery of choosed method effectiveness. The method of network traffic capture and analysis during the network segment passive monitoring is considered in this work. Also, the processing way of numerous network traffic indexes for further network information safety level evaluation is proposed. Represented methods and concepts usage allows increasing of network segment reliability at the expense of operative network anomalies capturing, that could testify about possible hazards and such information is very useful for the network administrator. To get a proof of the method effectiveness, several network attacks, whose data is storing in specialised DARPA dataset, were chosen. Relevant parameters for every attack type were calculated. In such a way, start and termination time of the attack could be obtained by this method with insignificant error for some methods.

[...] Read more.
Forensics Image Acquisition Process of Digital Evidence

By Erhan Akbal Sengul Dogan

DOI: https://doi.org/10.5815/ijcnis.2018.05.01, Pub. Date: 8 May 2018

For solving the crimes committed on digital materials, they have to be copied. An evidence must be copied properly in valid methods that provide legal availability. Otherwise, the material cannot be used as an evidence. Image acquisition of the materials from the crime scene by using the proper hardware and software tools makes the obtained data legal evidence. Choosing the proper format and verification function when image acquisition affects the steps in the research process. For this purpose, investigators use hardware and software tools. Hardware tools assure the integrity and trueness of the image through write-protected method. As for software tools, they provide usage of certain write-protect hardware tools or acquisition of the disks that are directly linked to a computer. Image acquisition through write-protect hardware tools assures them the feature of forensic copy. Image acquisition only through software tools do not ensure the forensic copy feature. During the image acquisition process, different formats like E01, AFF, DD can be chosen. In order to provide the integrity and trueness of the copy, hash values have to be calculated using verification functions like SHA and MD series. In this study, image acquisition process through hardware-software are shown. Hardware acquisition of a 200 GB capacity hard disk is made through Tableau TD3 and CRU Ditto. The images of the same storage are taken through Tableau, CRU and RTX USB bridge and through FTK imager and Forensic Imager; then comparative performance assessment results are presented.

[...] Read more.
Public vs Private vs Hybrid vs Community - Cloud Computing: A Critical Review

By Sumit Goyal

DOI: https://doi.org/10.5815/ijcnis.2014.03.03, Pub. Date: 8 Feb. 2014

These days cloud computing is booming like no other technology. Every organization whether it’s small, mid-sized or big, wants to adapt this cutting edge technology for its business. As cloud technology becomes immensely popular among these businesses, the question arises: Which cloud model to consider for your business? There are four types of cloud models available in the market: Public, Private, Hybrid and Community. This review paper answers the question, which model would be most beneficial for your business. All the four models are defined, discussed and compared with the benefits and pitfalls, thus giving you a clear idea, which model to adopt for your organization.

[...] Read more.
Optimal Route Based Advanced Algorithm using Hot Link Split Multi-Path Routing Algorithm

By Akhilesh A. Waoo Sanjay Sharma Manjhari Jain

DOI: https://doi.org/10.5815/ijcnis.2014.08.07, Pub. Date: 8 Jul. 2014

Present research work describes advancement in standard routing protocol AODV for mobile ad-hoc networks. Our mechanism sets up multiple optimal paths with the criteria of bandwidth and delay to store multiple optimal paths in the network. At time of link failure, it will switch to next available path. We have used the information that we get in the RREQ packet and also send RREP packet to more than one path, to set up multiple paths, It reduces overhead of local route discovery at the time of link failure and because of this End to End Delay and Drop Ratio decreases. The main feature of our mechanism is its simplicity and improved efficiency. This evaluates through simulations the performance of the AODV routing protocol including our scheme and we compare it with HLSMPRA (Hot Link Split Multi-Path Routing Algorithm) Algorithm. Indeed, our scheme reduces routing load of network, end to end delay, packet drop ratio, and route error sent. The simulations have been performed using network simulator OPNET. The network simulator OPNET is discrete event simulation software for network simulations which means it simulates events not only sending and receiving packets but also forwarding and dropping packets. This modified algorithm has improved efficiency, with more reliability than Previous Algorithm.

[...] Read more.
Synthesis of the Structure of a Computer System Functioning in Residual Classes

By Victor Krasnobayev Alexandr Kuznetsov Kateryna Kuznetsova

DOI: https://doi.org/10.5815/ijcnis.2023.01.01, Pub. Date: 8 Feb. 2023

An important task of designing complex computer systems is to ensure high reliability. Many authors investigate this problem and solve it in various ways. Most known methods are based on the use of natural or artificially introduced redundancy. This redundancy can be used passively and/or actively with (or without) restructuring of the computer system. This article explores new technologies for improving fault tolerance through the use of natural and artificially introduced redundancy of the applied number system. We consider a non-positional number system in residual classes and use the following properties: independence, equality, and small capacity of residues that define a non-positional code structure. This allows you to: parallelize arithmetic calculations at the level of decomposition of the remainders of numbers; implement spatial spacing of data elements with the possibility of their subsequent asynchronous independent processing; perform tabular execution of arithmetic operations of the base set and polynomial functions with single-cycle sampling of the result of a modular operation. Using specific examples, we present the calculation and comparative analysis of the reliability of computer systems. The conducted studies have shown that the use of non-positional code structures in the system of residual classes provides high reliability. In addition, with an increase in the bit grid of computing devices, the efficiency of using the system of residual classes increases. Our studies show that in order to increase reliability, it is advisable to reserve small nodes and blocks of a complex system, since the failure rate of individual elements is always less than the failure rate of the entire computer system.

[...] Read more.
Optimal Route Based Advanced Algorithm using Hot Link Split Multi-Path Routing Algorithm

By Akhilesh A. Waoo Sanjay Sharma Manjhari Jain

DOI: https://doi.org/10.5815/ijcnis.2014.08.07, Pub. Date: 8 Jul. 2014

Present research work describes advancement in standard routing protocol AODV for mobile ad-hoc networks. Our mechanism sets up multiple optimal paths with the criteria of bandwidth and delay to store multiple optimal paths in the network. At time of link failure, it will switch to next available path. We have used the information that we get in the RREQ packet and also send RREP packet to more than one path, to set up multiple paths, It reduces overhead of local route discovery at the time of link failure and because of this End to End Delay and Drop Ratio decreases. The main feature of our mechanism is its simplicity and improved efficiency. This evaluates through simulations the performance of the AODV routing protocol including our scheme and we compare it with HLSMPRA (Hot Link Split Multi-Path Routing Algorithm) Algorithm. Indeed, our scheme reduces routing load of network, end to end delay, packet drop ratio, and route error sent. The simulations have been performed using network simulator OPNET. The network simulator OPNET is discrete event simulation software for network simulations which means it simulates events not only sending and receiving packets but also forwarding and dropping packets. This modified algorithm has improved efficiency, with more reliability than Previous Algorithm.

[...] Read more.
Classification of HHO-based Machine Learning Techniques for Clone Attack Detection in WSN

By Ramesh Vatambeti Vijay Kumar Damera Karthikeyan H. Manohar M. Sharon Roji Priya C. M. S. Mekala

DOI: https://doi.org/10.5815/ijcnis.2023.06.01, Pub. Date: 8 Dec. 2023

Thanks to recent technological advancements, low-cost sensors with dispensation and communication capabilities are now feasible. As an example, a Wireless Sensor Network (WSN) is a network in which the nodes are mobile computers that exchange data with one another over wireless connections rather than relying on a central server. These inexpensive sensor nodes are particularly vulnerable to a clone node or replication assault because of their limited processing power, memory, battery life, and absence of tamper-resistant hardware. Once an attacker compromises a sensor node, they can create many copies of it elsewhere in the network that share the same ID. This would give the attacker complete internal control of the network, allowing them to mimic the genuine nodes' behavior. This is why scientists are so intent on developing better clone assault detection procedures. This research proposes a machine learning based clone node detection (ML-CND) technique to identify clone nodes in wireless networks. The goal is to identify clones effectively enough to prevent cloning attacks from happening in the first place. Use a low-cost identity verification process to identify clones in specific locations as well as around the globe. Using the Optimized Extreme Learning Machine (OELM), with kernels of ELM ideally determined through the Horse Herd Metaheuristic Optimization Algorithm (HHO), this technique safeguards the network from node identity replicas. Using the node identity replicas, the most reliable transmission path may be selected. The procedure is meant to be used to retrieve data from a network node. The simulation result demonstrates the performance analysis of several factors, including sensitivity, specificity, recall, and detection.

[...] Read more.
D2D Communication Using Distributive Deep Learning with Coot Bird Optimization Algorithm

By Nethravathi H. M. Akhila S. Vinayakumar Ravi

DOI: https://doi.org/10.5815/ijcnis.2023.05.01, Pub. Date: 8 Oct. 2023

D2D (Device-to-device) communication has a major role in communication technology with resource and power allocation being a major attribute of the network. The existing method for D2D communication has several problems like slow convergence, low accuracy, etc. To overcome these, a D2D communication using distributed deep learning with a coot bird optimization algorithm has been proposed. In this work, D2D communication is combined with the Coot Bird Optimization algorithm to enhance the performance of distributed deep learning. Reducing the interference of eNB with the use of deep learning can achieve near-optimal throughput. Distributed deep learning trains the devices as a group and it works independently to reduce the training time of the devices. This model confirms the independent resource allocation with optimized power value and the least Bit Error Rate for D2D communication while sustaining the quality of services. The model is finally trained and tested successfully and is found to work for power allocation with an accuracy of 99.34%, giving the best fitness of 80%, the worst fitness value of 46%, mean value of 6.76 and 0.55 STD value showing better performance compared to the existing works.

[...] Read more.
A Critical appraisal on Password based Authentication

By Amanpreet A. Kaur Khurram K. Mustafa

DOI: https://doi.org/10.5815/ijcnis.2019.01.05, Pub. Date: 8 Jan. 2019

There is no doubt that, even after the development of many other authentication schemes, passwords remain one of the most popular means of authentication. A review in the field of password based authentication is addressed, by introducing and analyzing different schemes of authentication, respective advantages and disadvantages, and probable causes of the ‘very disconnect’ between user and password mechanisms. The evolution of passwords and how they have deep-rooted in our life is remarkable. This paper addresses the gap between the user and industry perspectives of password authentication, the state of art of password authentication and how the most investigated topic in password authentication changed over time. The author’s tries to distinguish password based authentication into two levels ‘User Centric Design Level’ and the ‘Machine Centric Protocol Level’ under one framework. The paper concludes with the special section covering the ways in which password based authentication system can be strengthened on the issues which are currently holding-in the password based authentication.

[...] Read more.
Synthesis of the Structure of a Computer System Functioning in Residual Classes

By Victor Krasnobayev Alexandr Kuznetsov Kateryna Kuznetsova

DOI: https://doi.org/10.5815/ijcnis.2023.01.01, Pub. Date: 8 Feb. 2023

An important task of designing complex computer systems is to ensure high reliability. Many authors investigate this problem and solve it in various ways. Most known methods are based on the use of natural or artificially introduced redundancy. This redundancy can be used passively and/or actively with (or without) restructuring of the computer system. This article explores new technologies for improving fault tolerance through the use of natural and artificially introduced redundancy of the applied number system. We consider a non-positional number system in residual classes and use the following properties: independence, equality, and small capacity of residues that define a non-positional code structure. This allows you to: parallelize arithmetic calculations at the level of decomposition of the remainders of numbers; implement spatial spacing of data elements with the possibility of their subsequent asynchronous independent processing; perform tabular execution of arithmetic operations of the base set and polynomial functions with single-cycle sampling of the result of a modular operation. Using specific examples, we present the calculation and comparative analysis of the reliability of computer systems. The conducted studies have shown that the use of non-positional code structures in the system of residual classes provides high reliability. In addition, with an increase in the bit grid of computing devices, the efficiency of using the system of residual classes increases. Our studies show that in order to increase reliability, it is advisable to reserve small nodes and blocks of a complex system, since the failure rate of individual elements is always less than the failure rate of the entire computer system.

[...] Read more.
Detecting Remote Access Network Attacks Using Supervised Machine Learning Methods

By Samuel Ndichu Sylvester McOyowo Henry Okoyo Cyrus Wekesa

DOI: https://doi.org/10.5815/ijcnis.2023.02.04, Pub. Date: 8 Apr. 2023

Remote access technologies encrypt data to enforce policies and ensure protection. Attackers leverage such techniques to launch carefully crafted evasion attacks introducing malware and other unwanted traffic to the internal network. Traditional security controls such as anti-virus software, firewall, and intrusion detection systems (IDS) decrypt network traffic and employ signature and heuristic-based approaches for malware inspection. In the past, machine learning (ML) approaches have been proposed for specific malware detection and traffic type characterization. However, decryption introduces computational overheads and dilutes the privacy goal of encryption. The ML approaches employ limited features and are not objectively developed for remote access security. This paper presents a novel ML-based approach to encrypted remote access attack detection using a weighted random forest (W-RF) algorithm. Key features are determined using feature importance scores. Class weighing is used to address the imbalanced data distribution problem common in remote access network traffic where attacks comprise only a small proportion of network traffic. Results obtained during the evaluation of the approach on benign virtual private network (VPN) and attack network traffic datasets that comprise verified normal hosts and common attacks in real-world network traffic are presented. With recall and precision of 100%, the approach demonstrates effective performance. The results for k-fold cross-validation and receiver operating characteristic (ROC) mean area under the curve (AUC) demonstrate that the approach effectively detects attacks in encrypted remote access network traffic, successfully averting attackers and network intrusions.

[...] Read more.
Public vs Private vs Hybrid vs Community - Cloud Computing: A Critical Review

By Sumit Goyal

DOI: https://doi.org/10.5815/ijcnis.2014.03.03, Pub. Date: 8 Feb. 2014

These days cloud computing is booming like no other technology. Every organization whether it’s small, mid-sized or big, wants to adapt this cutting edge technology for its business. As cloud technology becomes immensely popular among these businesses, the question arises: Which cloud model to consider for your business? There are four types of cloud models available in the market: Public, Private, Hybrid and Community. This review paper answers the question, which model would be most beneficial for your business. All the four models are defined, discussed and compared with the benefits and pitfalls, thus giving you a clear idea, which model to adopt for your organization.

[...] Read more.
Two-Layer Security of Images Using Elliptic Curve Cryptography with Discrete Wavelet Transform

By Ganavi M. Prabhudeva S.

DOI: https://doi.org/10.5815/ijcnis.2023.02.03, Pub. Date: 8 Apr. 2023

Information security is an important part of the current interactive world. It is very much essential for the end-user to preserve the confidentiality and integrity of their sensitive data. As such, information encoding is significant to defend against access from the non-authorized user. This paper is presented with an aim to build a system with a fusion of Cryptography and Steganography methods for scrambling the input image and embed into a carrier media by enhancing the security level. Elliptic Curve Cryptography (ECC) is helpful in achieving high security with a smaller key size. In this paper, ECC with modification is used to encrypt and decrypt the input image. Carrier media is transformed into frequency bands by utilizing Discrete Wavelet Transform (DWT). The encrypted hash of the input is hidden in high-frequency bands of carrier media by the process of Least-Significant-Bit (LSB). This approach is successful to achieve data confidentiality along with data integrity. Data integrity is verified by using SHA-256. Simulation outcomes of this method have been analyzed by measuring performance metrics. This method enhances the security of images obtained with 82.7528db of PSNR, 0.0012 of MSE, and SSIM as 1 compared to other existing scrambling methods.

[...] Read more.
Statistical Techniques for Detecting Cyberattacks on Computer Networks Based on an Analysis of Abnormal Traffic Behavior

By Zhengbing Hu Roman Odarchenko Sergiy Gnatyuk Maksym Zaliskyi Anastasia Chaplits Sergiy Bondar Vadim Borovik

DOI: https://doi.org/10.5815/ijcnis.2020.06.01, Pub. Date: 8 Dec. 2020

Represented paper is currently topical, because of year on year increasing quantity and diversity of attacks on computer networks that causes significant losses for companies. This work provides abilities of such problems solving as: existing methods of location of anomalies and current hazards at networks, statistical methods consideration, as effective methods of anomaly detection and experimental discovery of choosed method effectiveness. The method of network traffic capture and analysis during the network segment passive monitoring is considered in this work. Also, the processing way of numerous network traffic indexes for further network information safety level evaluation is proposed. Represented methods and concepts usage allows increasing of network segment reliability at the expense of operative network anomalies capturing, that could testify about possible hazards and such information is very useful for the network administrator. To get a proof of the method effectiveness, several network attacks, whose data is storing in specialised DARPA dataset, were chosen. Relevant parameters for every attack type were calculated. In such a way, start and termination time of the attack could be obtained by this method with insignificant error for some methods.

[...] Read more.
LCDT-M: Log-Cluster DDoS Tree Mitigation Framework Using SDN in the Cloud Environment

By Jeba Praba. J. R. Sridaran

DOI: https://doi.org/10.5815/ijcnis.2023.02.05, Pub. Date: 8 Apr. 2023

In the cloud computing platform, DDoS (Distributed Denial-of-service) attacks are one of the most commonly occurring attacks. Research studies on DDoS mitigation rarely considered the data shift problem in real-time implementation. Concurrently, existing studies have attempted to perform DDoS attack detection. Nevertheless, they have been deficient regarding the detection rate. Hence, the proposed study proposes a novel DDoS mitigation scheme using LCDT-M (Log-Cluster DDoS Tree Mitigation) framework for the hybrid cloud environment. LCDT-M detects and mitigates DDoS attacks in the Software-Defined Network (SDN) based cloud environment. The LCDT-M comprises three algorithms: GFS (Greedy Feature Selection), TLMC (Two Log Mean Clustering), and DM (Detection-Mitigation) based on DT (Decision Tree) to optimize the detection of DDoS attacks along with mitigation in SDN. The study simulated the defined cloud environment and considered the data shift problem during the real-time implementation. As a result, the proposed architecture achieved an accuracy of about 99.83%, confirming its superior performance.

[...] Read more.