Work place: Department of Information Technology and Decision Sciences, University of Energy and Natural Resources, Sunyani 00233, Ghana
E-mail: peter.appiahene@uenr.edu.gh
Website:
Research Interests: Deep Learning, Image Processing
Biography
Dr. Peter Appiahene is an Assistant Professor (Senior Lecturer) in the Department of Information Technology and Decision Sciences at the University of Energy and Natural Resources, Ghana. Dr. Peter Appiahene has a PhD in Computer Science and is the current Head of the Department. Designs and Analysis of Algorithm, Deep Learning, Image Processing, Social Network Analysis, and Optimizations are his current research areas.
By Stephen Afrifa Peter Appiahene Tao Zhang Vijayakumar Varadarajan
DOI: https://doi.org/10.5815/ijeme.2024.01.01, Pub. Date: 8 Feb. 2024
Anemia is a common condition among adults, particularly in children and pregnant women. Anemia is defined as a lack of healthy red blood cells or hemoglobin. Early identification of anemia is critical for excellent health and well-being, which contributes to the sustainable development goals (SDGs), notably SDG 3. The intrusive way to detecting anemia has several hurdles, including anxiety and cost, which impedes health development. With the advent of technology, it is critical to create non-invasive techniques to diagnose anemia that can minimize costs while also improving detection efficacy. A distinct non-invasive technique is developed in this study employing machine learning (ML) models. This study's dataset contains 4260 observations of non-anemic (0) and anemic (1) children. To train the dataset, six (6) different ML models were employed: k-Nearest Neighbor (KNN), decision tree (DT), logistic regression (LR), nave bayes (NB), random forest (RF), and kernel-support vector machine (KSVM). The DT and RF models obtained the highest accuracy of 99.92%, followed by the KNN at 98.98%. The ML models used in this study produced substantial results. The models also received high marks on performance evaluation metrics such as accuracy, recall, F1-score, and Area Under the Curve-Receiver Operating Characteristics (AUC-ROC). When compared to the other ML models, the DT and RF had the best precision (1.000), recall (0.9987), F1-score (0.9994), and AUC-ROC (0.9994) ratings. According to the findings, ML models are crucial in the detection of anemia using a non-invasive technique, which is critical for health facilities to boost efficiency and quality healthcare. Various machine learning models were used in this study to detect anemia in children using palm images. Finally, the findings confirm earlier studies on the effectiveness of ML algorithms as a non-invasive means of detecting iron deficiency anemia.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals