Emuoyibofarhe O. Justice

Work place: Department of Computer Science and Engineering, LadokeAkintola University of Technology

E-mail: eojustice@gmail.com

Website:

Research Interests: Data Structures and Algorithms, Computing Platform, Computer systems and computational processes

Biography

Emuoyibofarhe O. Justice received his Ph.D in 2004. He specializes in Neuro-fuzzy computing/ computational optimization. He had post-doctoral fellowship at the centre of excellence for mobile e-service, University of Zululand, South Africa in 2006, He is a member of the (IEEE) computational intelligence society. He is currently an associate professor in the department of computer science and engineering, Ladoke Akintola University of Technology Ogbomoso. He is currently the Deputy Dean of the Faculty of Engineering and Technology of the same Institution. His present reseach area is in the application of mobile computing and wirelss communication to e-health and telemedicine.

Author Articles
Development of Neuro-fuzzy System for Early Prediction of Heart Attack

By Obanijesu Opeyemi Emuoyibofarhe O. Justice

DOI: https://doi.org/10.5815/ijitcs.2012.09.03, Pub. Date: 8 Aug. 2012

This work is aimed at providing a neuro-fuzzy system for heart attack detection. Theneuro-fuzzy system was designed with eight input field and one output field. The input variables are heart rate, exercise, blood pressure, age, cholesterol, chest pain type, blood sugar and sex. The output detects the risk levels of patients which are classified into 4 different fields: very low, low, high and very high. The data set used was extracted from the database and modeled in order to make it appropriate for the training, then the initial FIS structure was generated, the network was trained with the set of training data after which it was tested and validated with the set of testing data. The output of the system was designed in a way that the patient can use it personally. The patient just need to supply some values which serve as input to the system and based on the values supplied the system will be able to predict the risk level of the patient.

[...] Read more.
Other Articles