Work place: Department of Computer Engineering, NIT Kurukshetra, India
E-mail: skj.nith@gmail.com
Website:
Research Interests: Data Structures and Algorithms, Image Processing, Software Organization and Properties, Software Engineering, Software Creation and Management, Software Construction, Computational Science and Engineering
Biography
Sanjay K. Jain, PhD (2006) & M.Tech (MNNIT, Allahabad, India). He is a Professor in the Department of Computer Engineering at NIT Kurukshetra, India. He is actively involved in research and has 27 year experience of teaching and research. His current research areas include image processing, data science and software engineering
By Anoop Kumar Patel Sanjay Kumar Jain
DOI: https://doi.org/10.5815/ijigsp.2019.11.03, Pub. Date: 8 Nov. 2019
The risk of cardiovascular diseases is growing worldwide, and its early detection is necessary to reduce the level of risk. Structural parameters of the carotid artery as intima-media thickness and functional parameters such as arterial elasticity are directly associated with cardiovascular diseases. Segmentation of the carotid artery is required to measure the structural parameters and its temporal value that is used to estimate the arterial elasticity. This paper has two primary objectives: (i) Segmentation of the sequence of carotid artery ultrasound to measure temporal value of intima-media thickness and lumen-diameter, and (ii) Young’s modulus of elasticity estimation. The proposed segmentation method uses the contextual feature of the image pattern and is based on multi-layer extreme learning machine auto-encoder network. This segmentation method has two parts: (a) region of interest localization and (b) lumen-intima interface and media-adventitia interface detection at the far wall. ROI localization algorithm divides the ultrasound frame into columns and also divides each column into overlapping blocks, ensuring that every column has a region of interest block. A multi-layer extreme learning machine with auto-encoder is trained with labelled data and in testing; system classifies the blocks into ‘region of interest’ and ‘non-region of interest’. Pixels belonging to the region of interest are classified in the first part and a similar network-based method is proposed for lumen-intima and media-adventitia interface detection at the near wall of the carotid artery. Structural parameter of the artery, intima-media thickness and lumen diameter are measured in a sequence of images of the cardiac cycle. The temporal values of structural parameters are used to estimate the young’s modulus of elasticity.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals