Work place: Department of Computer Science & Engineering JNTUH, Hyderabad, Telangana State, India
E-mail:
Website:
Research Interests: Theoretical Computer Science, Computer systems and computational processes, Computational Science and Engineering, Applied computer science, Computer Science & Information Technology
Biography
M. Chandra Mohan received B.E. (EEE) degree from Osmania University in 1994. He worked as Assistant Engineer in AP State Electricity Board (APSEB) for 7 years (1994- 2001). He completed his M.Tech. (CS&E) from Osmania University in 2000. He is working in JNT University Hyderabad since 2001. Presently he is working as an Professor in Dept of CS&E in JNTUH College of Engineering Hyderabad, JNT University Hyderabad. He is the recipient of 3 Gold Medals from Osmania University at the graduate level by securing University first rank. He completed his Ph.D in 2010 from JNTU Hyderabad in Computer Science & Engineering. He has more than 30 publications in various national and international journals and conferences.
By D.Ratna kishore M. Chandra Mohan Akepogu. Ananda Rao
DOI: https://doi.org/10.5815/ijigsp.2017.03.03, Pub. Date: 8 Mar. 2017
Human pose detection in 2D/3D images plays a vital role in a large number of applications such as gesture recognition, video surveillance and human robot interaction. Joint human pose estimation in the 2D motion video sequence and 3D facial pose estimation is the challenging issue in computer vision due to noise, large deformation, illumination and complex background. Traditional directed and undirected graphical models such as the Bayesian Markov model, conditional random field have limitations with arbitrary pose estimation in 2D/3D images using the joint probabilistic model. To overcome these issues, we introduce an ensemble chaining graph model to estimate arbitrary human poses in 2D video sequences and facial expression evaluation in 3D images. This system has three main hybrid algorithms, namely 2D/3D human pose pre-processing algorithm, ensemble graph chaining segmented model on 2D/3D video sequence pose estimation and 3D ensemble facial expression detection algorithm. The experimental results on public benchmarks 2D/3D datasets show that our model is more efficient in solving arbitrary human pose estimation problem. Also, this model has the high true positive rate, low false detection rate compared to traditional joint human pose detection models.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals