Work place: Department of Computer Science and Engineering, Annamalai University Annamalai Nagar – 608002, Tamil Nadu, India
E-mail: govind_aucse@yahoo.com
Website:
Research Interests: Data Mining, Data Structures and Algorithms
Biography
M.Govindarajan received the B.E and M.E and Ph.D Degree in Computer Science and Engineering from Annamalai University, Tamil Nadu, India in 2001 and 2005 and 2010 respectively. He did his post-doctoral research in the Department of Computing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom in 2011 and pursuing Doctor of Science at Utkal University, orissa, India. He is currently an Assistant Professor at the Department of Computer Science and Engineering, Annamalai University, Tamil Nadu, India. He has presented and published more than 75 papers at Conferences and Journals and also received best paper awards. He has delivered invited talks at various national and international conferences. His current Research Interests include Data Mining and its applications, Web Mining, Text Mining, and Sentiment Mining. He was the recipient of the Achievement Award for the field and to the Conference Bio-Engineering, Computer science, Knowledge Mining (2006), Prague, Czech Republic, Career Award for Young Teachers (2006), All India Council for Technical Education, New Delhi, India and Young Scientist International Travel Award (2012), Department of Science and Technology, Government of India New Delhi. He is Young Scientists awardee under Fast Track Scheme (2013), Department of Science and Technology, Government of India, New Delhi and also granted Young Scientist Fellowship (2013), Tamil Nadu State Council for Science and Technology, Government of Tamil Nadu, Chennai. He has visited countries like Czech Republic, Austria, Thailand, United Kingdom, Malaysia, U.S.A, and Singapore. He is an active Member of various professional bodies and Editorial Board Member of various conferences and journals.
DOI: https://doi.org/10.5815/ijisa.2014.03.09, Pub. Date: 8 Feb. 2014
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. This paper addresses using an ensemble of classification methods for data mining applications like intrusion detection, direct marketing, and signature verification. In this research work, new hybrid classification method is proposed for heterogeneous ensemble classifiers using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using a Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. Here, modified training sets are formed by resampling from original training set; classifiers constructed using these training sets and then combined by voting. The proposed RBF-SVM hybrid system is superior to individual approach for intrusion detection, direct marketing, and signature verification in terms of classification accuracy.
[...] Read more.DOI: https://doi.org/10.5815/ijcnis.2014.02.07, Pub. Date: 8 Jan. 2014
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed for homogeneous ensemble classifiers using bagging and heterogeneous ensemble classifiers using arcing classifier and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of real and benchmark data sets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase and combining phase. A wide range of comparative experiments are conducted for real and benchmark data sets of intrusion detection. The accuracy of base classifiers is compared with homogeneous and heterogeneous models for data mining problem. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and also heterogeneous models exhibit better results than homogeneous models for real and benchmark data sets of intrusion detection.
[...] Read more.DOI: https://doi.org/10.5815/ijieeb.2013.06.02, Pub. Date: 8 Dec. 2013
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed using classifiers in both homogeneous ensemble classifiers using bagging and heterogeneous ensemble classifiers using arcing classifier and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of real and benchmark data sets of data mining applications like intrusion detection, direct marketing and signature verification. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase and combining phase. A wide range of comparative experiments are conducted for real and benchmark data sets of direct marketing. The accuracy of base classifiers is compared with homogeneous and heterogeneous models for data mining problem. The proposed ensemble methods provide significant improvement of accuracy compared to individual Classifiers and also heterogeneous models exhibit better results than homogeneous models for real and benchmark data sets of data mining applications.
[...] Read more.DOI: https://doi.org/10.5815/ijmecs.2013.11.02, Pub. Date: 8 Nov. 2013
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed for homogeneous ensemble classifiers using bagging and heterogeneous ensemble classifiers using arcing classifier and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of real and benchmark data sets of recognizing totally unconstrained handwritten numerals. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase and combining phase. A wide range of comparative experiments are conducted for real and benchmark data sets of recognizing totally unconstrained handwritten numerals. The accuracy of base classifiers is compared with homogeneous and heterogeneous models for data mining problem. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and also heterogeneous models exhibit better results than homogeneous models for real and benchmark data sets of recognizing totally unconstrained handwritten numerals.
[...] Read more.DOI: https://doi.org/10.5815/ijieeb.2013.05.07, Pub. Date: 8 Nov. 2013
Data mining is the use of algorithms to extract the information and patterns derived by the knowledge discovery in databases process. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. The feasibility and the benefits of the proposed approaches are demonstrated by the means of data mining applications like intrusion detection, direct marketing, and signature verification. A variety of techniques have been employed for analysis ranging from traditional statistical methods to data mining approaches. Bagging and boosting are two relatively new but popular methods for producing ensembles. In this work, bagging is evaluated on real and benchmark data sets of intrusion detection, direct marketing, and signature verification in conjunction with radial basis function classifier as the base learner. The proposed bagged radial basis function is superior to individual approach for data mining applications in terms of classification accuracy.
[...] Read more.DOI: https://doi.org/10.5815/ijmecs.2013.10.08, Pub. Date: 8 Oct. 2013
Data mining is the use of algorithms to extract the information and patterns derived by the knowledge discovery in databases process. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. The feasibility and the benefits of the proposed approaches are demonstrated by the means of data mining applications like intrusion detection, direct marketing, and signature verification. A variety of techniques have been employed for analysis ranging from traditional statistical methods to data mining approaches. Bagging and boosting are two relatively new but popular methods for producing ensembles. In this work, bagging is evaluated on real and benchmark data sets of intrusion detection, direct marketing, and signature verification in conjunction with as the base learner. The proposed is superior to individual approach for data mining applications in terms of classification accuracy.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals