Ghada ElTaweel

Work place: Faculty of Computers and Informatics, Suez Canal University, Ismailia, Egypt

E-mail: ghada_eltawel@ci.suez.edu.eg

Website:

Research Interests: Computer systems and computational processes, Image Compression, Image Manipulation, Image Processing, Data Structures and Algorithms

Biography

Ghada ElTaweel Born in Cairo. Received the Ph.D. degree in 2005 from Cairo University. In 2011, received the Associate Professor degree. Currently a professor in Suez Canal University, Computer Science department. Research expertise and interests include image processing, data fusion and image classification.

Author Articles
Estimating the Sample Size for Training Intrusion Detection Systems

By Yasmen Wahba Ehab ElSalamouny Ghada ElTaweel

DOI: https://doi.org/10.5815/ijcnis.2017.12.01, Pub. Date: 8 Dec. 2017

Intrusion detection systems (IDS) are gaining attention as network technologies are vastly growing. Most of the research in this field focuses on improving the performance of these systems through various feature selection techniques along with using ensembles of classifiers. An orthogonal problem is to estimate the proper sample sizes to train those classifiers. While this problem has been considered in other disciplines, mainly medical and biological, to study the relation between the sample size and the classifiers accuracy, it has not received a similar attention in the context of intrusion detection as far as we know.
In this paper we focus on systems based on Na?ve Bayes classifiers and investigate the effect of the training sample size on the classification performance for the imbalanced NSL-KDD intrusion dataset. In order to estimate the appropriate sample size required to achieve a required classification performance, we constructed the learning curve of the classifier for individual classes in the dataset. For this construction we performed nonlinear least squares curve fitting using two different power law models. Results showed that while the shifted power law outperforms the power law model in terms of fitting performance, it exhibited a poor prediction performance. The power law, on the other hand, showed a significantly better prediction performance for larger sample sizes.

[...] Read more.
Other Articles