Ikechi Irisi

Work place: Department of Physics, River State University, Port Harcourt, River State, Nigeria

E-mail: ikechirisi@gmail.com


Research Interests: Embedded System, Computational Engineering, Computational Science and Engineering


Ikechi Risi is lecturer in Physics Department at Rivers State University, Nigeria. He obtained his B.Sc and M.Sc in Solid State Physics at the University in 2013 and 2019, respectively. He is currently pursuing his Ph.D at Ignatius Ajuru University of Education, Port-Harcourt. His interest areas are electronic circuit design/construction, embedded system, and radio signal propagation engineering

Author Articles
Optimised MLP Neural Network Model for Optimum Prognostic Learning of out of School Children Trend in Africa: Implication for Guidance and Counselling

By Edith Edimo Joseph Joseph Isabona Odaro Osayande Ikechi Irisi

DOI: https://doi.org/10.5815/ijmecs.2023.01.01, Pub. Date: 8 Feb. 2023

One crucial and intricate problem in the education sector that must be dealt with is children who initially enrolled in schools but later dropped out before finishing mandatory primary education. These children are generally referred to as out-of-school children. To contribute to the discuss, this paper presents the development of a robust Multilayer Perceptron (MLP) based Neural Network Model (NN) for optimal prognostic learning of out-of-school children trends in Africa. First, the Bayesian optimization algorithm has been engaged to determine the best MLP hyperparameters and their specific training values. Secondly, MLP-tuned hyperparameters were employed for optimal prognostic learning of different out-of-school children data trends in Africa. Thirdly, to assess the proposed MLP-NN model's prognostic performance, two error metrics were utilized, which are the Correlation coefficient (R) and Normalized root means square error (NRMSE). Among other things, a higher R and lower NRMSE values indicate a better MLP-NN precision performance. The all-inclusive results of the developed MLP-NN model indicate a satisfactory prediction capacity, attaining low NRMSE values between 0.017 - 0.310 during training and 0.034 - 0.233 during testing, respectively. In terms of correlation fits, the out-of-school children's data and the ones obtained with the developed MLP-NN model recorded high correlation precision training/testing performance values of 0.9968/0.9974, 0.9801/0.9373, 0.9977/0.9948 and 0.9957/0.9970, respectively. Thus, the MLP-NN model has made it possible to reliably predict the different patterns and trends rate of out-of-school children in Africa. One of the implications for counselling, among others, is that if every African government is seriously committed to funding education at the foundation level, there would be a reduction in the number of out-of-school children as observed in the out-of-school children data.

[...] Read more.
A Robust Approach for Best Probability Distribution Model Selection for Optimal Analysis of Radio Signals

By Joseph Isabona Osaghae Edgar Agbotiname Lucky Imoize Ikechi Irisi

DOI: https://doi.org/10.5815/ijwmt.2022.04.05, Pub. Date: 8 Aug. 2022

Probabilistic parametric functions such as density and distribution functions modeled to depict certain stochastic behaviour are used to express the fundamental theories of reliability engineering. In the existing works of literature, a few probability distribution functions have been well reported. However, selecting and identifying the most suitable distribution functions to reliably model and fit datasets remain. This work examines the application of three different methods for selecting the best function to model and fit measured data. The methods comprise the parametric maximum likelihood estimation, Akaike Information Criteria and the Bayesian Information Criteria. In particular, these methods are implemented on Signal Interference to Noise Ratio (SINR) data acquired over an operational Long Term Evolution (LTE) mobile broadband networks in a typical built-up indoor and outdoor campus environment for three months. Generally, results showed a high level of consistency with the Kolmogorov-Semirnov Criteria. Specifically, the Weibull distribution function showed the most credible performance for radio signal analysis in the three study locations. The explored approach in this paper would find useful applications in modeling, design and management of cellular network resources

[...] Read more.
Other Articles