INFORMATION CHANGE THE WORLD

International Journal of Information Technology and Computer Science(IJITCS)

ISSN: 2074-9007 (Print), ISSN: 2074-9015 (Online)

Published By: MECS Press

IJITCS Vol.14, No.5, Oct. 2022

Design and Implementation of an Improved Obstacle Avoidance Model for Land Mower

Full Text (PDF, 747KB), PP.26-43


Views:3   Downloads:0

Author(s)

Samuel M. Alade, Adebayo S. Afonrinwo

Index Terms

Obstacle Avoidance;Autonomous System;Image Recognition;Simulation;Land mower;Finite Automata;Obstacle Detection

Abstract

The paper presents the design, simulation and evaluation of an improved obstacle avoidance model for the lawnmower. Studies has shown that there has been few or no work done has on the total minimization of computational time in obstacle avoidances of land mower. Sample image data were collected through a digital camera of high resolution. The obstacle avoidance model was designed using the Unified Modelling Language tools to model the autonomous system from the higher-level perspective of the structural composition of the system. Automata theory was used to model two major components of the system, which are the conversion of the colour image to binary and the obstacle recognizer components by neural network. The model was simulated using the and evaluated using the false acceptance rate and false rejection rate as performance metrics. Results showed that the model obtained False Acceptance Rate and False Rejection Rate values of 0.075 and 0.05 respectively. In addition, the efficiency of the proposed algorithm used in the present work shows that the time taken to avoid obstacles was faster when compared with another existing model.

Cite This Paper

Samuel M. Alade, Adebayo S. Afonrinwo, "Design and Implementation of an Improved Obstacle Avoidance Model for Land Mower", International Journal of Information Technology and Computer Science(IJITCS), Vol.14, No.5, pp.26-43, 2022. DOI:10.5815/ijitcs.2022.05.03

Reference

[1]B. Okafor, “Simple Design of self-powered Lawn Mower”. International Journal of Engineering and Technology, vol. 3, no.10, pp. 933-938, 2013.

[2]D. P. Watson, and D.H. Scheidt, “Autonomous Systems” Johns Hopkins APL Technical Digest, vol.26, no.4, pp.368-376, 2005.

[3]R. Simmons, J. L. Fernandez, R. Goodwin, S.  Koenig and J. O'sullivan, “Lessons learned from Xavier”, IEEE Robotics & Automation Magazine, vol. 7, no. 2, pp.33-39, 2017.

[4]Y. Yashiro, K.  Eguchi, S. Iwasaki, Y. Yamauchi, and M.  Nakata, “Development of Obstacle Avoidance Control for Robotic Products Using Potential Method”, Mitsubishi Heavy Industries Technical Review, vol. 51, no.1, pp. 34-39, 2014. 

[5]N. Allen, A. Tabassum, W. Semke, W and J. Neubert,”Repeatability of edge detectors in various environmental conditions”  In 2017 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, pp. 912-919, 2017.. 

[6]N. Nourani-Vatani, M. Bosse, J. Roberts and M. Dunbabin, “Practical Path Planning and Obstacle Avoidance for Autonomous Mowing” In Proceedings of the Australasian Conference on Robotics and Automation pp. 1-9, 2006.

[7]A. Dipin, and T. K. Chandrashekhar, “Solar Powered Vision Based Robotic Lawn Mower”, International Journal of Engineering Research and Reviews, vol.2, no.2, pp.53-56., 2014.

[8]K. W. Gray and K. Baker, “Obstacle Detection and Avoidance for an Autonomous Farm Tractor”, (Unplished Master's Thesis). Utah State University, Department of Electrical and Computer Engineering, USA. 2000.

[9]K. A. Daltorio , A. D. Rolin., J. A. Beno, B. E. Hughes, A. Schepelmann, M. S. Branicky, R. D. Quinn and J. M. Green, “An obstacle-edging reflex for an autonomous lawnmower”, In IEEE/ION Position, Location and Navigation Symposium, IEEE,  pp. 1079-1092, 2010. 

[10]P. E. Hart, N. J. Nilsson, and B. Raphael, " A Formal basis for the heuristic  determination of minimum cost path", IEEE Trans. System. Sci. Cybern, Vol. 4, no. 2, pp. 100-110, 1968.

[11]J. Borenstein and Y. Koren, (1989). Real-time obstacle avoidance for fast mobile robots. IEEE Transactions on systems, Man, and Cybernetics, vol. 19, no.5, pp.1179-1187, 1989. 

[12]J. Borenstein and Y.  Koren, Y, “Histogramic in-motion Mapping for Mobile Robot Obstacle Avoidance”. IEEE Transactions on Robotics and Automation, vol. 7, no. 4, pp. 535-539, 1991.

[13]J. L. Crowley, “World Modeling and Position Estimation for a Mobile Robot using Ultrasonic Ranging”, In Proceedings, 1989 International Conference on Robotics and Automation pp. 674-680, 1989. IEEE. 

[14]R.  Kuc and B. Barshan, “Navigating vehicles through an unstructured environment with sonar” In Proceedings, 1989 International Conference on Robotics and Automation, IEEE, pp. 1422-1426, 1989 R.

[15]Oroko J, Nyakoe G (2014) Obstacle avoidance and path planning schemes for autonomous navigation of a mobile robot: a review. In: Proceedings of Sustainable Research and Innovation Conference, vol 4, pp. 314–318

[16]B. C. Creed, A. Arsenault, A., S. A. Velinsky and T. A. Lasky, “Obstacle Avoidance for Autonomous Mowing”, Mechanics Based Design of Structures and Machines, vol. 40, no. 3, pp. 334-348, 2012.

[17]Bhavesh, V. A. (2015). Comparison of various obstacle avoidance algorithms. Int. J. Eng. Res. Technol, 4, 629-632.

[18]K. W. Gray and K. Baker, “Obstacle Detection and Avoidance for an Autonomous Farm Tractor”, (Unplished Master's Thesis). Utah State University, Department of Electrical and Computer Engineering, USA. 2000.

[19]L. E. Kavraki, M. N. Kolountzakis, and J. C. Latombe, “Analysis of Probabilistic Roadmaps for Path Planning”, In Proceedings of IEEE International Conference on Robotics and Automation, Vol. 4, pp. 3020-3025, 1996. 

[20]S. M. LaValle, and J. J. Kuffner, “Randomized Kinodynamic Planning” The International Journal of Robotics Research, vol. 20, no.5, pp.378-400, 2001.

[21]A. Shkolnik, M. Levashov, I. R. Manchester, I. R., and R. Tedrake, (2011), “Bounding on Rough Terrain with the LittleDog robot” The International Journal of Robotics Research, vol. 30, no.2, pp.192-215, 2011.

[22]V. Milanés, D. F. Llorca, J. Villagrá, J. C. Pérez, I. Fernández, C.  Parra, Gonzalaz and M. A.  Sotelo, M. A, “Intelligent Automatic Overtaking System using Vision for Vehicle Detection”, Expert Systems with Applications, vol.39, no.3, pp.3362-3373, 2012.

[23]A. Cochrum, J. Corteo, J. Oppeland, and M.  Seth, “An Autonomous Lawnmower”, The ManScaper, 1-8, 2013.

[24]T. J. S. Sivarao, H. Anand, H. and F.  Minhat, “Review of Automated Machines towards Devising A New Approach in Developing Semi-Automated Grass Cutter” International Journal of Mechanical and Mechatronics Engineering IJMMEIJENS 2010.

[25]W. T. Fitch and A. D.  Friederici,, “Artificial Grammar Learning meets Formal Language Theory”: An Overview. Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 367, no. 1598, pp. 1933-1955, 2012.

[26]I. M. Chiswell, “A course in formal languages, automata and groups”. Springer Science & Business Media, 2008.

[27]J. E. Hopcroft, “Introduction to Automata Theory”, Languages, and Computation, India: Pearson Education. 1-537, 2008. 

[28]M. Wasif, “Design and implementation of autonomous Lawn-Mower Robot Controller”, In 2011 7th International Conference on Emerging Technologies, IEEE, pp. 1-5, 2011.

[29]Cherubini, F. Spindler and F.  Chaumette, “Autonomous Visual Navigation and Laser-Based moving Obstacle Avoidance”, IEEE Transactions on Intelligent Transportation Systems, vol.15, no. 5, pp.2101-2110, 2014.

[30]F. Tobassum, S. Lopa, M. M. Terek, and B. J. Ferdosi, " Obstacle avoiding robot", Global Journal of Research in Engineering, vol. 17, no. 1, 2017.

[31]M. Franzius, M. Dunn, M.  Einecke and M. Dirnberger “Embedded Robust Visual Obstacle Detection on Autonomous Lawn Mowers”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.44-52, 2017. 

[32]Newstadt, G., Green, K., Anderson, D., Lang, M., Morton, Y., & McCollum, J. (2010). Miami RedBlade III: A GPS-aided autonomous lawnmower. Positioning, 8(1), 25-34.

[33]Schepelmann, A., Snow, H. H., Hughes, B. E., Merat, F. L., Quinn, R. D., & Green, J. M. (2009, November). Vision-based obstacle detection and avoidance for the cwru cutter autonomous lawnmower. In 2009 IEEE International Conference on Technologies for Practical Robot Applications (pp. 218-223). IEEE.

[34]N. Ahmad, N. bin Lokman and M. H. Abd Wahab, (2016, November). Autonomous Lawnmower using FPGA implementation. In IOP Conference Series: Materials Science and Engineering, Vol. 160, No. 1, p. 012112, IOP Publishing.

[35]S. Hrabar, (2011) “Reactive obstacle avoidance for rotorcraft uavs”. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4967–4974, 2011.

[36]K. M Hasan, A. Al-Nahid, K. J. Reza, S. Khatun, M.R. Basar, “Sensor based autonomous color line follower robot with obstacle avoidance”. In: 2013 IEEE Business Engineering and Industrial Applications Colloquium (BEIAC), pp. 598–603, 2013.

[37]M. Zohaib, M. Pasha, R. A. Riaz, N. Javaid, M. Ilahi, and R. D. Khan, “Control strategies for mobile robot with obstacle avoidance”, J Basic Appl Sci Res vol. 3, no. 4, pp. 1027–1036, 2013.

[38]V. A. Akpan, and A. S.  Eyefia, (2021). Autonomous Vehicle with Machine Vision and Integrated Sensor Suite Based on Internet-of-Things Technologies. sensors, 15, 19.

[39]Yasin, J. N., Mohamed, S. A., Haghbayan, M. H., Heikkonen, J., Tenhunen, H., & Plosila, J. (2021). Low-cost ultrasonic based object detection and collision avoidance method for autonomous robots. International Journal of Information Technology, 13(1), 97-107.

[40]A. Saraswathi, A. A. Abass, S. I. Mathi and A. Eswaran, “Obstacle detecting robot using arduino and sensor”, S. , vol. 3, 2015.

[41]E. J. Rodríguez-Seda. and C. K Rico, “Cellular automata based decentralized cooperative collision avoidance control for multiple mobile robots”. In 2019 IEEE International Symposium on Measurement and Control in Robotics (ISMCR), pp. A3-3, 2019, IEEE.

[42]J. Yang, J. Yang, and W. Wang, W. (2011). “An Efficient Path Planning Method Based on State Automata Model for Mobile Robots”, In Advances in Automation and Robotics, Vol. 2 pp. 181-188, 2011, Springer, Berlin, Heidelberg.

[43]R. Hussain, T. Zielinska, and R. Hexel, “Finite state automaton-based control system for walking machines”, International Journal of Advanced Robotic Systems, vol. 16, no. 3, 2019, 1729881419853182.