Prediction of Defect Prone Software Modules using MLP based Ensemble Techniques

Full Text (PDF, 798KB), PP.26-31

Views: 0 Downloads: 0

Author(s)

Ahmed Iqbal 1,* Shabib Aftab 1

1. Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan

* Corresponding author.

DOI: https://doi.org/10.5815/ijitcs.2020.03.04

Received: 9 Nov. 2019 / Revised: 20 Nov. 2019 / Accepted: 27 Nov. 2019 / Published: 8 Jun. 2020

Index Terms

Software Defect Prediction, MLP, Ensemble Classification techniques, Software Metrics

Abstract

Prediction of defect prone software modules is now considered as an important activity of software quality assurance. This approach uses the software metrics to predict whether the developed module is defective or not. This research presents MLP based ensemble classification framework to predict the defect prone software modules. The framework predicts the defective modules by using three dimensions: 1) Tuned MLP, 2) Tuned MLP with Bagging 3) Tuned MLP with Boosting. In first dimension only the MLP is used for the classification after optimization. In second dimension, the optimized MLP is integrated with bagging technique. In third dimension, the optimized MLP is integrated with boosting technique. Four publically available cleaned NASA MDP datasets are used for the implementation of proposed framework and the performance is evaluated by using F-measure, Accuracy, Roc Area and MCC. The performance of the proposed framework is compared with ten widely used supervised classification techniques by using Scott-Knott ESD test and the results reflects the high performance of the proposed framework. 

Cite This Paper

Ahmed Iqbal, Shabib Aftab, "Prediction of Defect Prone Software Modules using MLP based Ensemble Techniques", International Journal of Information Technology and Computer Science(IJITCS), Vol.12, No.3, pp.26-31, 2020. DOI:10.5815/ijitcs.2020.03.04

Reference

[1]A. Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana, M. Ahmad, and A. Husen “Performance Analysis of Machine Learning Techniques on Software Defect Prediction using NASA Datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, 2019.

[2]A. Iqbal, S. Aftab, I. Ullah, M. S. Bashir, and M. A. Saeed, “A Feature Selection based Ensemble Classification Framework for Software Defect Prediction,” Int. J. Mod. Educ. Comput. Sci., vol. 11, no. 9, pp. 54-64, 2019.

[3]A. Iqbal, S. Aftab, and F. Matloob, “Performance Analysis of Resampling Techniques on Class Imbalance Issue in Software Defect Prediction,” Int. J. Inf. Technol. Comput. Sci., vol. 11, no. 11, pp. 1-10, 2019.

[4]F. Matloob, S. Aftab, and A. Iqbal, “A Framework for Software Defect Prediction using Feature Selection and Ensemble Learning Techniques,” Int. J. Mod. Educ. Comput. Sci., vol. 11, no. 12, pp. 14–20, 2019

[5]C. Manjula and L. Florence, “Deep neural network based hybrid approach for software defect prediction using software metrics,” Cluster Comput., pp. 1–17, 2018.

[6]“ScottKnottESD (v2.0.3).” [Online]. Available: https://github.com/klainfo/ScottKnottESD. [Accessed: 08-Nov-2019].

[7]A. Dadwal, H. Washizaki, Y. Fukazawa, T. Iida, M. Mizoguchi, and K. Yoshimura, “Prioritization in automotive software testing: Systematic literature review,” CEUR Workshop Proc., vol. 2273, no. QuASoQ, pp. 52–58, 2018.

[8]R. M. De Castro Andrade, I. De Sousa Santos, V. Lelli, Ḱathia Marçal De Oliveira, and A. R. Rocha, “Software testing process in a test factory from ad hoc activities to an organizational standard,” ICEIS 2017 - Proc. 19th Int. Conf. Enterp. Inf. Syst., vol. 2, no. Iceis, pp. 132–143, 2017.

[9]D. Kumar and K. K. Mishra, “The Impacts of Test Automation on Software’s Cost, Quality and Time to Market,” Procedia Comput. Sci., vol. 79, pp. 8–15, 2016.

[10]A. Bertolino, “Software testing research: Achievements, challenges, dreams,” FoSE 2007 Futur. Softw. Eng., no. September, pp. 85–103, 2007.

[11]S. Huda et al., “A Framework for Software Defect Prediction and Metric Selection,” IEEE Access, vol. 6, no. c, pp. 2844–2858, 2017.

[12]E. Erturk and E. Akcapinar, “A comparison of some soft computing methods for software fault prediction,” Expert Syst. Appl., vol. 42, no. 4, pp. 1872–1879, 2015.

[13]Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-company software defect prediction,” Inf. Softw. Technol., vol. 54, no. 3, Mar. 2012.

[14]M. Ahmad, S. Aftab, I. Ali, and N. Hameed, “Hybrid Tools and Techniques for Sentiment Analysis: A Review,” Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, 2017.

[15]M. Ahmad, S. Aftab, S. S. Muhammad, and S. Ahmad, “Machine Learning Techniques for Sentiment Analysis: A Review,” Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, p. 27, 2017.

[16]M. Ahmad and S. Aftab, “Analyzing the Performance of SVM for Polarity Detection with Different Datasets,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 10, pp. 29–36, 2017.

[17]M. Ahmad, S. Aftab, and I. Ali, “Sentiment Analysis of Tweets using SVM,” Int. J. Comput. Appl., vol. 177, no. 5, pp. 25–29, 2017.

[18]M. Ahmad, S. Aftab, M. S. Bashir, and N. Hameed, “Sentiment Analysis using SVM: A Systematic Literature Review,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 2, 2018.

[19]M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and Z. Nawaz, “SVM Optimization for Sentiment Analysis,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, 2018.

[20]S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and Z. Nawaz, “Rainfall Prediction in Lahore City using Data Mining Techniques,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, 2018.

[21]S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and Z. Nawaz, “Rainfall Prediction using Data Mining Techniques: A Systematic Literature Review,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 5, 2018.

[22]A. Iqbal and S. Aftab, “A Feed-Forward and Pattern Recognition ANN Model for Network Intrusion Detection,” Int. J. Comput. Netw. Inf. Secur., vol. 11, no. 4, pp. 19–25, 2019.

[23]A. Iqbal, S. Aftab, I. Ullah, M. A. Saeed, and A. Husen, “A Classification Framework to Detect DoS Attacks,” Int. J. Comput. Netw. Inf. Secur., vol. 11, no. 9, pp. 40-47, 2019.

[24]I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, 2016.

[25]I. Gondra, “Applying machine learning to software fault-proneness prediction,” J. Syst. Softw., vol. 81, no. 2, pp. 186–195, 2008.

[26]K. O. Elish and M. O. Elish, “Predicting defect-prone software modules using support vector machines,” J. Syst. Softw., vol. 81, no. 5, pp. 649–660, 2008.

[27]F. Lanubile, A. Lonigro, and G. Visaggio, “Comparing Models for Identifying Fault-Prone Software Components,” Proc. Seventh Int’l Conf. Software Eng. and Knowledge Eng., pp. 312–319, June 1995.

[28]M. Shepperd, Q. Song, Z. Sun and C. Mair, “Data Quality: Some Comments on the NASA Software Defect Datasets,” IEEE Trans. Softw. Eng., vol. 39, pp. 1208–1215, 2013.

[29]“NASA Defect Dataset.” [Online]. Available: https://github.com/klainfo/NASADefectDataset. [Accessed: 01-April-2019].

[30]B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of classification techniques on the performance of defect prediction models,” Proc. - Int. Conf. Softw. Eng., vol. 1, pp. 789–800, 2015.

[31]G. Czibula, Z. Marian, and I. G. Czibula, “Software defect prediction using relational association rule mining,” Inf. Sci. (Ny)., vol. 264, pp. 260–278, 2014.

[32]D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C. Riquelme, “Preliminary comparison of techniques for dealing with imbalance in software defect prediction,” in Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering. ACM, p. 43, 2014.

[33]C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “The Impact of Automated Parameter Optimization on Defect Prediction Models,” IEEE Trans. Softw. Eng., vol. 5589, no. 1, 2018.