IJISA Vol. 13, No. 5, Oct. 2021
Cover page and Table of Contents: PDF (size: 283KB)
REGULAR PAPERS
In this era, face recognition technology is an important component that is widely used in various aspects of life, mostly for biometrics issues for personal identification. There are three main steps of a face recognition system: face detection, face embedding, and classification. Classification plays a vital role in making the system recognizes a face accurately. With the growing need for face recognition applications, the need for machine learning methods are required for accurate image classification is also increasing. One thing that can be done to increase the performance of the classifier is by tuning the hyperparameter. For this study, the evaluation performance of classification is conducted to obtain the best classifier among four different classifier algorithms (decision tree, SVM, random forest, and AdaBoost) for a specific dataset by tuning the hyperparameter. The best classifier is obtained by evaluating the performance of each classifier in terms of training time, accuracy, precision, recall, and F1-score. This study was using a dataset of 2267 facial data (128D vector space) derived from the face embedding process. The result showed that SVM is the best classifier with a training time of 0.5 s and the score for accuracy, precision, recall, and F1-score are about 98%.
[...] Read more.Given the problem of electrical energy storage, it is critical to predict the amount of load required in order to have a reliable and stable power distribution network. Predicting electricity consumption of subscribers and analyzing their consumption behavior under the influence of various factors and time variables is important. Given the large volume of subscriber consumption data and the effective factors, it is only possible to analyze the data using new information technology tools such as data mining. In this paper, feature selection, clustering and Markov process techniques are used to model and predict the power consumption data of subscribers. First, the selection of a subset of effective features is based on the combined PCA approach and the Firefly algorithm. Subscribers are then clustered based on the features selected by the K-means. Finally, subscriber behavior patterns are modeled to predict consumption using the Markov process on high-risk clusters. This study is simulated based on the data of electricity subscribers in Bushehr-Iran Power Distribution Company. The simulation results show the superiority of the proposed model over other similar algorithms such as LASSO-QRNN and HyFIS. The accuracy of power consumption prediction in the proposed method is about 1% compared to LASSO-QRNN and about 0.5% compared to HyFIS.
[...] Read more.This paper presents the application of Moth Flame optimization (MFO) algorithm to determine the best impulse response coefficients of FIR low pass, high pass, band pass and band stop filters. MFO was inspired by observing the navigation strategy of moths in nature called transverse orientation composed of three mathematical sub-models. The performance of the proposed technique was compared to those of other well-known high performing optimization techniques like techniques like Particle Swarm Optimization (PSO), Novel Particle Swarm Optimization (NPSO), Improved Novel Particle Swarm Optimization (INPSO), Genetic Algorithm (GA), Parks and McClellan (PM) Algorithm. The performances of the MFO based designed optimized FIR filters have proved to be superior as compared to those obtained by PSO, NPSO, INPSO, GA, and PM Algorithm. Simulation results indicated that the maximum stop band ripples 0.057326, transition width 0.079 and fitness value 1.3682 obtained by MFO is better than that of PSO, NPSO, INPSO, GA, and PM Algorithms. The value of stop band ripples indicated the ripples or fluctuations obtained at the range which signals are attenuated is very low. The reduced value of transition width is the rate at which a signal changes from either stop band to pass band of a filter or vice versa is very good. Also, small fitness value in an indication that the values of the control variable of MFO are very near to its optimum solutions. The proposed design technique in this work generates excellent solution with high computational efficiency. This shows that MFO algorithm is an outstanding technique for FIR filter design.
[...] Read more.Timely detection of rice diseases can help farmers to take necessary action and thus reducing the yield loss substantially. Automatic recognition of rice diseases from the rice leaf images using computer vision and machine learning can be beneficial over the manual method of disease recognition through visual inspection. During the recent years, deep learning, a very popular and efficient machine learning algorithm, has shown great promise in image classification task. In this paper, a segmentation-based method using deep neural network for classifying rice diseases from leaf images has been proposed. Disease-affected regions of the rice leaves have been segmented using local segmentation method and the Convolutional Neural Network (CNN) has been trained with those images. Proposed method has been applied on three different datasets including the one created by us which consists of the rice leaf images collected from Bangladesh Rice Research Institute (BRRI). Three state-of-the-art CNN architectures VGG, ResNet and DenseNet, used in the proposed method, have been trained with these three datasets for classifying the diseases. Classification performance of the proposed method using the said three CNN architectures for the three datasets have been analyzed and compared. These results show that this model is quite promising in classifying rice leaf diseases. Outcome of this research is an enhancement in the performance of rice disease classification which is quite significant for the viability of this work to be transformed into a real-time application for the farmers.
[...] Read more.Cervical cancer is the fourth most prevalent cancer in women which has claimed 3,41,831 lives and accounted for 6,04,127 new cases in 2020 worldwide. To reduce such a vast mortality rate, early detection of the disease is essential. A fast, accurate, and interpretable machine learning model is a research subject. Fewer features reduce the computational effort and improve interpretation. A 3-Stage Hybrid feature selection approach and a Stacked Classification model are evaluated on the cervical cancer dataset obtained from the UCI Machine Learning Repository with 35 features and one outcome variable. Stage-1 uses a Genetic Algorithm and Logistic Regression Architecture for Feature Selection and selects twelve features well correlated with the class but not among themselves. Stage-2 utilizes the same Genetic Algorithm and Logistic Regression Architecture for Feature Selection to select five features. In Stage-3, Logistic Regression (LR), Naïve Bayes (NB), Support Vector Machine (SVM), Extra Trees (ET), Random Forest (RF), and Gradient Boosting (GDB) are used with the five features to identify patients with or without cancer. Data splitting, several metrics, and statistical tests are used, along with 10-fold cross validation, to do a comparative analysis. LR, NB, SVM, ET, RF, and GDB demonstrate improvement across performance measures by reducing the number of features to five. In the 66-34 split, all five machine learning methods except NB recorded 97% accuracy with 5 features. Also, the Stacked model produced higher than 96% accuracy with five features in 66-34 and 80-20 splits, and in 10-fold cross validation. Various performance aggregators have shown improved results with reduced features when compared to previous studies. Finally, with approximately 100% performance in classification results, the suggested ensemble model showed its promise. The output results were compared to those of other studies on the same dataset, and the proposed classifiers were found to be the most effective across all performance dimensions.
[...] Read more.