IJISA Vol. 6, No. 2, 8 Jan. 2014
Cover page and Table of Contents: PDF (size: 858KB)
Full Text (PDF, 858KB), PP.37-43
Views: 0 Downloads: 0
Nonlinear Observer, Adaptive Neural Network, Chaos Control, Pendulum System, Modified Duffing System
Chaos control is an important subject in control theory. Chaos control usually confronts with some problems due to unavailability of states or losing the system characteristics during the modeling process. In this situation, using an appropriate observer in control strategy may overcome the problem. In this paper, states are estimated using an observer without having complete prior information from nonlinear term based on neural network. Simulation results verify performance of the proposed structure in estimating nonlinear term specifically for an online practical use.
Milad Malekzadeh, Alireza Khosravi, Abolfazl Ranjbar Noei, Reza Ghaderi, "Application of Adaptive Neural Network Observer in Chaotic Systems", International Journal of Intelligent Systems and Applications(IJISA), vol.6, no.2, pp.37-43, 2014. DOI:10.5815/ijisa.2014.02.05
[1]J. Stark, K. Hardy, “Chaos: useful at last? ”, Science, Vol 301,pp.1192-1193 ,2003 .
[2]Samuel Bowong, F.M. Moukam Kakmeni, Jean Luc Dim. “Chaos control in the uncertain Duffing oscillator”, Journal of sound and vibration, Vol.292, pp. 869–880,2006
[3]Ercan Solak, Omer Morgul, Umut Ersoy. “Observer-based control of a class of chaotic systems”, Physics Letters A, Vol.279, pp. 47-55, 2001.
[4]L.Ljung, “Asymptotic behavior of the extended kalman filter as a parameter estimator for linear systems”, IEEE Transaction. Automat. Contr. AC-24, pp. 36-50,1979 .
[5]Y. Song and J. W. Grizzle, “The extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems”, in Proc. Amer. Contr. Conf. pp.3365-3369.1992
[6]“Special issue on applications of kalman filtering”, IEEE Trans. Automat. Contr.,Vol. AC-28, no 3,1983.
[7]J. Julier and K. Uhlmann, “A new method for nonlinear transformation of means and covariances in filter and estimation” IEEE Trans. Autom. Control, Vol. 45,no 3,pp 477-482,2000.
[8]G. Bastin and M R Gevers, “Stable adaptive observers for nonlinear time-varying systems”, IEEE Trans. Auto. Ctrl. Vol. 33, no 7, pp 650-657, 1988.
[9]R. Marino, “Adaptive observers for single output nonlinear systems”, IEEE Trans. Auto. Ctrl, Vol. 35, no 9, pp 1054-1058, 1990.
[10]R. Marino and P. Tomei, “Global adaptive observer for nonlinear systems via filtered transformations”, IEEE Trans. Auto. Ctrl. Vol. 37, no 8, pp 1239-1245.1992.
[11]R. Marino and P. Tomei, “Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems”, IEEE Trans. Auto. Ctrl.,Vol. 40,no 7, pp 1300-1304,1995.
[12]Young H. Kim, Frank L. Lewis and Chaouki T. Abdallahs “A dynamic recurrent neural network based adaptive observer for a class of nonlinear systems”, Automatica, Vol. 33, no 8,pp 1539-1543,1997.
[13]Ruiqi Wang, Zhujun Jing “Chaos control of chaotic pendulum system”, Chaos, Solitons and Fractals., Vol. 21, pp 201-207,2004.
[14]Dongchuan Yu, Dongqing Wang, Ninhua Xia “A class of nonlinear PID control for modified Duffing system”, Proceeding of the 2006 American control conference Minneapolis, Minnesota, USA, IEEE.2006.