IJISA Vol. 6, No. 11, 8 Oct. 2014
Cover page and Table of Contents: PDF (size: 659KB)
Full Text (PDF, 659KB), PP.49-56
Views: 0 Downloads: 0
Artificial Intelligence, SAFIS (Sequential Adaptive Fuzzy Inference System), Neuro-Fuzzy Networks, Nonlinear System, Control, Robot Manipulator
The present paper is dedicated to the presentation and implementation of an optimized technique allowing an on-line estimation of a robot manipulator parameters to use them in a computed torque control. Indeed the proposed control law needs the exact robot model to give good performances. The complexity of the robot manipulator and its strong non-linearity makes it hard to know its parameters. Therefore, we propose in this paper to use neuro-fuzzy networks Sequential Adaptive Fuzzy Inference System (SAFIS) to estimate the parameters of the controlled robot manipulator.
Sahraoui Mustapha, Khelfi Mohamed Fayçal, Salem Mohammed, "Sequential Adaptive Fuzzy Inference System Based Intelligent Control of Robot Manipulators", International Journal of Intelligent Systems and Applications(IJISA), vol.6, no.11, pp.49-56, 2014. DOI:10.5815/ijisa.2014.11.07
[1]Y. Gao, M. J. Er, W. E. Leithead, and D. J. Leith, "On-line adaptive control of robot manipulators using dynamic fuzzy neural networks", Proc. American Control Conf., pp.4828 -4833 2001
[2]Q. H. M. Meng, "Application of an efficient neural network to identification and adaptive control of unknown robot dynamics", Int. J. Intell. Control Syst., vol. 1, no. 4, pp.459 -468 1996
[3]Y. Gao and M. J. Er, "Robust adaptive fuzzy neural control of robot manipulators", Proc. IEEE-INNS Int. Joint Conf. Neural Networks, pp.2188 -2193 2001
[4]H. Maaraf, “Notion de base de la théorie de flou”, Université d’Evry Val d’Essonne, 2002.
[5]Q. H. M. Meng, "Application of an efficient neural network to identification and adaptive control of unknown robot dynamics", Int. J. Intell. Control Syst., vol. 1, no. 4, pp.459 -468 1996
[6]F.L Lewis, , C. T. Abdallah, and D. M. Dawson , “Control of Robot Manipulators”, Macmillan Publishing Company, Inc, USA, 1993
[7]K.B. Cho, B.H.Wang, “Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction”, Fuzzy Sets and Systems 83 (1996) 325–339
[8]G.B. Huang, P. Saratchandran and N. Sundararajan, “A Generalized Growing And Pruning RBF(GGAP-RBF) Neural Network for Function Approximation”, IEEE Trans. On Neural Networks, 2004
[9]H. Jun Rong, N. Sundararajan∗, Guang-Bin Huang, P. Saratchandran “Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear system identification and prediction”, IEEE Trans, Nanyang Technological University, Singapore.2006
[10]S. Haykin, Neural Networks: A Comprehensive Foundation. Upper Saddle River, N.J.: Prentice Hall, 1999. 2nd Edition
[11]L.Yingwei, N. Sundararajan, and P. Saratchandran, “Performance evaluation of a sequental minimal radial basis function (RBF) neural network learning algorithm,” IEEE Trans. Neural Networks, vol. 9, pp. 308–318,Mar. 1998
[12]T. Takagi, M. Sugeno, “Derivation of fuzzy control rules from human operator’s control actions”, in: Proceedings of the IFAC Symposium On Fuzzy Information, Knowledge Representation and Decision Analysis, pp. 55–60, July 1983
[13]G. V. Puskorius and L. A. Feldkamp, “Neuro-control of nonlinear dynamics systems with Kalman filter trained recurrent networks,” IEEE Trans. Neural Networks, vol. 5, pp. 279–297, Mar. 1994.
[14]D.Simon, “Training radial basic neural networks with the extended Kalmar filter”, Neuro-computing 48 ,2002 ,pp.455–475
[15]F.Piltan, M.Eram, M.Taghavi,O. Sadrni and M.Jafari “Nonlinear Fuzzy Model-base Technique to Compensate Highly Nonlinear Continuum Robot Manipulator” International Journal of Intelligent Systems and Applications (IJISA),PP.135-148, ijisa.2013.
[16]S. Bangia, PR Sharma, M. Garg ’’Simulation de Fuzzy Logic Basé Shunt hybride Filtre actif pour l'amélioration de la qualité de puissance’’, International Journal of Intelligent Systems and Applications (IJISA), vol 5, PP.96-104, Jan 2013.