[1]D. Max Parkin, Freddie Bray, J. Ferlay and Paola Pisani, Global Cancer Statistics, 2002, CA Cancer J Clin vol.55, (2005), pp. 74-108.
[2]D. West, P. Mangiameli, R. Rampal, V. West, Ensemble strategies for a medical diagnosis decision support system: a breast cancer diagnosis application, Eur. J. Oper. Res. 162, (2005), pp 532–551.
[3]C. Papaloukas, D.I. Fotiadis, A. Likas, L. K Michalis, An ischemia detection method based on artificial neural networks, Artificial Intelligence in Medicine, Vol.24, Issue 2, (2002), pp. 167-178.
[4]T.P. Exarchos, C. Papaloukas, D.I. Fotiadis, L.K. Michalis, An association rule mining-based methodology for automated detection of ischemic ECG beats, IEEE Transactions on Biomedical Engineering, Vol 53, Issue 8, (2006), pp. 1531-1540.
[5]Y. Goletsis, C. Papaloukas, D.I. Fotiadis, A. Likas, L.K. Michalis, A multicriteria decision based approach for ischaemia detection in long duration ECGs, 4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine, (2003), pp. 173-176.
[6]I. Guler, E.D Ubeyli, ECG beat classifier designed by combined neural network model. Pattern Recognition, Vol.38, Issue2, (2005), pp. 199–208.
[7]A.T. Tzallas, P.S. Karvelis, C.D. Katsis, D.I. Fotiadis, S. Giannopoulos, S. Konitsiotis, A Method for Classification of Transient Events in EEG Recordings: Application to Epilepsy Diagnosis, Methods of Information in Medicine, Vol. 49, Issue 6, (2006), pp: 610-621.
[8]C.D. Katsis, Y. Goletsis, A. Likas, D.I. Fotiadis, I. Sarmas, A novel method for automated EMG decomposition and MUAP classification, Artificial Intelligence in Medicine, Vol. 37 Issue 1, (2006), pp. 55-64.
[9]C. D. Katsis, T.P. Exarchos, C. Papaloukas, Y. Goletsis, D. I. Fotiadis, I. Sarmas, A two-stage method for MUAP classification based on EMG decomposition, Computers in Biology and Medicine, Vol. 37, Issue 9, (2007), pp. 1232-1240.
[10]C.I. Christodoulou, C.S. Pattichis, Unsupervised pattern recognition for the classification of EMG signals, IEEE Transactions on Biomedical Engineering, Vol.46 Issue:2, (1999), pp. 169 – 178.
[11]E.D. Ubeyli, I. Guler, Improving medical diagnostic accuracy of ultrasound Doppler signals by combining neural network models, Computers in Biology and Medicine, Vol.35, Issue 6, (2005), pp. 533–554.
[12]E.D. Ubeyli, I. Guler, Feature extraction from Doppler ultrasound signals for automated diagnostic systems. Computers in Biology and Medicine, Vol. 35, Issue 9, (2005), pp.735–764.
[13]S. AlZubi, A. Amira, 3D Medical Volume Segmentation Using Hybrid Multiresolution Statistical Approaches, Advances in Artificial Intelligence, Volume 2010.
[14]R. Setiono, Generating concise and accurate classification rules for breast cancer diagnosis, Artificial Intelligence in Medicine, Vol. 18, Issue 3, (2000), pp. 205–219.
[15]D. West, V. West, Model selection for a medical diagnostic decision support system: a breast cancer detection case. Artificial Intelligence in Medicine, Vol. 20, Issue 3, (2000), pp. 183–204.
[16]H. A. Abbass, An evolutionary artificial neural networks approach for breast cancer diagnosis, Artificial intelligence in Medicine, Vol. 25, Issue 3, (2002), pp. 265-281.
[17]E.D. Ubeyli, Implementing automated diagnostic systems for breast cancer detection, Expert Systems with Applications, Vol. 33, (2007), pp. 1054–1062.
[18]M. Karabataka, C. Inceb, An expert system for detection of breast cancer based on association rules and neural network, Expert Systems with Applications,Vol. 36, Issue 2, (2009), pp. 3465-3469.
[19]S. Belciug, E. El-Darzi, A partially connected neural network-based approach with application to breast cancer detection and recurrence, 5th IEEE International Conference Intelligent Systems, (2010), pp. 191–196.
[20]M. A. Hall, Correlation-based Feature Subset Selection for Machine Learning. Hamilton, New Zealand, 1998.
[21]M. A. Hall and G. Holmes, Benchmarking attribute selection techniques for discrete class data mining, IEEE Transactions in Knowledge and Data Engineering. Vol.15, (2003), pp. 1437-1447.
[22]A. Watkins. A resource limited artificial immune classifier. Master's thesis, Mississippi State University, MS. USA., December 2001.
[23]A. Watkins, J. Timmis, L. Boggess, Artificial immune recognition system (AIRS): An immune-inspired supervised learning algorithm, Genetic Programming and Evolvable Machines, Vol. 5, Issue3, (2004), pp. 291-317.
[24]E. Fix, J.L. Hodges, Discriminatory analysis, nonparametric discrimination: Consistency properties. Technical Report 4, USAF School of Aviation Medicine, Randolph Field, Texas, 1951.
[25]Y. Goletsis. T.P. Exarchos, C.D. Katsis, Bio-Inspired Intelligence for Credit Scoring, Special Issue on Computational Methods in Financial Engineering, International Journal of Financial Markets and Derivatives, Vol.2, No.1/2, (2011), pp.32 – 49.
[26]F. Menolascina, R.T. Alves, S. Tommasi, P. Chiarappa, M. Delgado, V. Bevilacqua, G. Mastronardi, A.A. Freitas, A. Paradiso, Improving Female Breast Cancer Prognosis by means of Fuzzy Rule Induction with Artificial Immune Systems, Proceedings of the International Conference on Life System Modeling and Simulation, 2007.
[27]F. Menolascina, S. Tommasi, P. Chiarappa, V. Bevilacqua, G. Mastronardi,A. Paradiso, Data mining techniques in aCGH-based breast cancer subtype profiling: an immune perspective with comparative study. BMC Systems Biology 1, 2007.
[28]G.B. Bezerra, G.M.A Cado, M. Menossi, L.N. de Castro, ,F.J. von Zuben, Recent advances in gene expression data clustering: a case study with comparative results, Genet. Mol. Res. Vol. 4, Issue 3, (2005), pp. 514–524.
[29]E.R. Hruschka, R.J. Campello, L.N. de Castro, Evolving clusters in gene expression data. Inf. Sci. Vol. 176, Issue 13, (2006), pp. 1898–1927.
[30]J.S. de Sousa, C.T. de Gomes, G.B. Bezerra, L.N. de Castro, F.J. von Zuben, An Immune-Evolutionary Algorithm for Multiple Rearrangements of Gene Expression Data, Genetic Programming and Evolvable Machines Vol. 5, Issue 2, (2004), pp. 157–179.
[31]S. Sahan, K. Polat, H. Kodaz,S. Gunes, A new hybrid method based on fuzzy artificial immune system and k-nn algorithm for breast cancer diagnosis. Computers in Biology and Medicine Vol. 37, Issue 3, (2007), pp. 415–423.
[32]K. Polat, S. Gunes, Principles component analysis, fuzzy weighting preprocessing and artificial immune recognition system based diagnostic system for diagnosis of lung cancer, Expert Systems with Applications, Vol. 34, Issue 1, 2008.
[33]K. Polat, S. Gunes, Computer aided medical diagnosis system based on principal component analysis and artificial immune recognition system classifier algorithm, Expert Systems with Applications, Vol. 34, Issue 1, 2008.
[34]V. Bevilacqua , F. Menolascina , R. T. Alves ,S. Tommasi , G. Mastronardi , M. Delgado ,A. Paradiso , G. Nicosia, A. A. Freitas , Artificial Immune Systems in Bioinformatics, Computational Intelligence in Biomedicine and Bioinformatics, Volume 151, (2008), pp 271-295.
[35]J. Brownlee, Artificial Immune Recognition System (AIRS) - A Review and Analysis,Technical Report], Centre for Intelligent Systems and Complex Processes, Faculty of Information and Communication Technologies, Swin-burne University of Technology, Victoria, Australia, Technical Report ID: 1-01, 2005.
[36]E.A. Sickles, Mammographic features of “Early” breast cancer, American Journal of Roentgenology, (1984), pp 143-464.
[37]A.T. Stavros, C.L. Rapp, S. H. Parker, Breast ultrasound, Lippincott Williams & Wilkins editors, 2004.