International Journal of Engineering and Manufacturing (IJEM)

IJEM Vol. 12, No. 4, Aug. 2022

Cover page and Table of Contents: PDF (size: 535KB)

Table Of Contents

REGULAR PAPERS

Comparison and Analysis of Software Vulnerability Databases

By Hakan Kekul Burhan Ergen Halil ARSLAN

DOI: https://doi.org/10.5815/ijem.2022.04.01, Pub. Date: 8 Aug. 2022

In order to protect information systems against threats and vulnerabilities, security breaches should be analyzed. In this case, analysts primarily conduct intelligence research through open source systems. In particular, vulnerability databases stand out as the most preferred references at this stage. At this point, our study will be the main reference for the verification of vulnerability analysis. It will assist in the planning of testing processes, patches and updates in the development of software. Moreover, it will create a perspective in this field, enabling readers to understand the concept of software security and databases.  In addition to unique advantages of this diversity, this has also led to some disadvantages. Our study focused on the reasons behind the creation of different databases. In addition, its advantages and disadvantages have been clearly demonstrated. First, the databases used were determined by examining the academic studies in the field of software security vulnerabilities. Twelve different databases used in the literature were identified. However, among these, the ones that are current and accessible to researchers were selected. As a result of this screening process, seven different databases were included in this study. The determined databases were examined in detail and explained. Then, databases were compared according to certain criteria. The data obtained as a result of the comparison are presented in detail. In this study, a systematic review of up-to-date and accessible vulnerability databases that are widely used in the literature is presented to help researchers decide which database to use.

[...] Read more.
Development of a Mobile Liquid Spraying Machine for Small and Medium Scale Crop Production

By Olayinka Mohammed Olabanji

DOI: https://doi.org/10.5815/ijem.2022.04.02, Pub. Date: 8 Aug. 2022

This article presents the design, simulation, fabrication and performance evaluation of a liquid spraying machine for application of pesticides in a small and medium scale crop plantation. In this article, components of the conceptualized spraying machine were modelled and assembled in SolidWorks CAD environment. The modelled components were designed in order to obtain design parameters for simulation. An extensive simulation on the stress and strain analysis was carried out on the designed components. The significance of the simulation is to predict the structural integrity and performance of the component parts of the machine before fabrication. The components were fabricated from locally sourced material in order to ensure a lower cost of production. The fabricated spraying machine was tested and the performance indicated that a field efficiency of 79% is obtainable in an average time of 1374 s to spray a maize crop field area of 1813 m2 having an average crop height of 0.52m. Further observations from the performance analysis also show that the field efficiency of the spraying machine drops to a value of 75% when used in a crop field area of 2206.3 m2. This is an indication that the spraying machine’s efficiency will reduce as the field area increases. In essence, the significance of the approach presented in this article is to ensure that the simulation predicts the performance of the design and the fabrication of the spraying machine using locally sourced material will ensure lower cost of fabrication.

[...] Read more.
Efficient Design of Compact 8-bit Wallace Tree Multiplier Using Reversible Logic

By Hemalatha K N Sangeetha B G

DOI: https://doi.org/10.5815/ijem.2022.04.03, Pub. Date: 8 Aug. 2022

Reversible logic is now employed in low-power CMOS circuits, optical data processing, DNA calculations, biological studies, quantum circuits, and nanotechnology. When building quantum computers, for example, the use of reversible logic is unavoidable. The structure of a reversible logic circuit is far more complex than that of an irreversible logic circuit. The multiplication operation is regarded as one of the most crucial in the ALU unit. In this study, the Wallace tree method is utilized to minimize the depth of circuits in 8x 8 reversible unsigned multiplier circuits. The proposed design is an attempt to enhance design factors including the number of gates, garbage outputs, constant inputs, and quantum cost for an 8-bit Wallace Tree multiplier using reversible logic. The Proposed design offers 27% less quantum cost compared to the existing 8-bit Wallace tree multiplier design.

[...] Read more.
NB-IoT based Status Measurement System for 33kV Power Distribution Networks in Smart Grids

By M.W.P Maduranga A.S.B Wijerathna

DOI: https://doi.org/10.5815/ijem.2022.04.04, Pub. Date: 8 Aug. 2022

In the recent decade, there has been a lot of focus on developing intelligent systems and appliances to suit the century's needs and make life easier. During the same period, the electric power industry introduced Smart-Grid, a crucial innovation to meet today's electric supply-demand and effectively use electric resources. The smart grid is an aspect of the electricity industry's evolution and reformation. An electrical power grid is a complex system consisting of generation, transmission, distribution, storage, and utilization. Coordinating these systems further increases the complexity of this interconnection of systems. The existing power distribution system available in the industry consists of monitoring equipment such as Supervisory Control and Data Acquisition(SCADA) to monitor some network parts. However, there's no automated way of monitoring power outages or load current flow in some sub-sections of the distribution line. Physical inspection is not convenient as it's more time-consuming.Moreover, these sub-sections may have up to ten distribution transformers or even could be more. In this work, A novel IoT-based power line monitoring system has been introduced to overcome those issues. Narrow Band Internet of Things(NB-IoT)  is used in this system as the primary wireless technology. A current sensor measures electrical line currents, and sensor values are pushed to a remote IoT cloud. Implemented system tested in several 33kV power lines and result and performances of the system is presented. 

[...] Read more.
Design of Rectangular Microstrip Patch Antenna at 3.3 GHz Frequency for S-band Applications

By Md. Imran Hossain Md. Tofail Ahmed Md. Humaun Kabir

DOI: https://doi.org/10.5815/ijem.2022.04.05, Pub. Date: 8 Aug. 2022

Low-profile antennas are required for aircraft, satellites, radar, and a variety of other vehicles due to aerodynamic considerations. The "patch" or microstrip antenna is a narrow band antenna with a low profile and low gain. Patch antennas are becoming more popular as a result of their ability to be printed on a circuit board. Microstrip antennas can be rectangular, circular, elliptical, or any other regular form, but the most common configurations are rectangular and circular. This research constructed a rectangular patch antenna that operates in the 3.3 GHz (S-band) operating frequency based on a description of microstrip antenna working principles. Agilent ADS Momentum software is used to create and simulate the antenna model. Finally, by optimizing and matching to meets, the best performance parameters such as Gain, Directivity, Efficiency, Power Intensity, Radiated power, and Return loss are obtained.

[...] Read more.