Performance Evaluation of Unslotted CSMA/CA for Wireless Sensor Networks: Energy Consumption Analysis and Cross Layer Routing

Full Text (PDF, 573KB), PP.1-12

Views: 0 Downloads: 0

Author(s)

Ines El Korbi 1,2,* Leila Azouz Saidane 3

1. High Institute of Computer Science, University of Tunis Manar, 1068, Tunis, Tunisia

2. Cristal Lab, National School of Computer Science, University of Manouba, 2010, La Manouba, Tunisia

3. National School of Computer Science, University of Manouba, 2010, La Manouba, Tunisia

* Corresponding author.

DOI: https://doi.org/10.5815/ijcnis.2017.06.01

Received: 8 Jan. 2017 / Revised: 5 Mar. 2017 / Accepted: 11 Apr. 2017 / Published: 8 Jun. 2017

Index Terms

IEEE 802.15.4, Wireless Sensor Networks, Unslotted CSMA/CA, Energy Consumption, Markov Chain, AE2-PEGASIS

Abstract

The IEEE 802.15.4 standard is considered as the most notorious MAC layer for wireless sensor networks (WSNs) in both centralized and distributed context. For instance, in multi hop environment, the beaconless IEEE 802.15.4 is used. Several works evaluated the performance of the beaconless IEEE 802.15.4 in terms of average delay, average energy consumption, throughput etc. But, none of the existing studies derived accurate energy consumption bounds of this MAC layer. In this paper, our contribution is twofold. We first propose a comprehensive energy consumption analysis of the unslotted CSMA/CA algorithm. The results are validated through simulation. Then, we exploit our analysis to propose a cross layer routing scheme that enhances the native PEGASIS protocol. Our scheme called Average Energy Enhanced PEGASIS (AE2-PEGASIS) considers the average energy consumption at the MAC layer when constructing the routes to the sink.

Cite This Paper

Inès El Korbi, Leila Azouz Saïdane, "Performance Evaluation of Unslotted CSMA/CA for Wireless Sensor Networks: Energy Consumption Analysis and Cross Layer Routing", International Journal of Computer Network and Information Security(IJCNIS), Vol.9, No.6, pp.1-12, 2017. DOI:10.5815/ijcnis.2017.06.01

Reference

[1]M. Avvenuti, P. Corsini, P. Masci, A. and Vecchio, “Increasing the efficiency of preamble sampling protocols for wireless sensor networks”, MCWC 2006, Vol. 1, pp. 117– 122, 2006.
[2]G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function“, IEEE J-SAC, Vol. 18, No. 3. pp. 535– 547, 2000.
[3]M. Buettner., G.V. Yee, E. Anderson and R. Han, “X-mac: A short preamble mac protocol for duty-cycled wireless sensor networks”, SenSys'06, Vol.4, pp. 307– 320, 2006.
[4]T. V. Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol for wireless sensor networks”, ACM Sensys’03, November 2003.
[5]P.G., Di Marco, P. Park, C. Fischione and K.H. Johansson, “Analytical modelling of IEEE 802.15.4 for multi-hop networks with heterogeneous traffic and hidden terminals”, IEEE Globecom 2010, pp. 1– 6, 2010.
[6]P.G., Di Marco, P. Park, C. Fischione and K.H. Johansson, “Analytical Modeling of Multi-hop IEEE 802.15.4 Networks”, IEEE Transactions On Vehicular Technology, Vol. 61, No. 7, pp. 3191– 3208, 2012.
[7]A. El-Hoiydi and J.-D. Decotignie, “Wisemac: An ultra-low power mac protocol for the multihop wireless sensor networks”, Lecture Notes in Computer Science (LNCS), Vol.3121s, pp.18– 31, 2004.
[8]E. Feo and G.A. Di Caro, “An analytical model of IEEE 802.15.4 non-beacon enabled CSMA/CA in multi-hop wireless sensor networks”, IDSIA, Lugano, Switzerland 2011, Tech. Rep. 05-11, 2011.
[9]W. Heinzelman, J. Kulik and H. Balakrishnan, “Adaptive protocols for information dissemination in wireless sensor networks”, MobiCom'99, pp. 174– 185, 1999.
[10]W. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-efficient communication protocol for wireless sensor networks”, HICSS '00, Vol. 8, pp. 8020– 8030, 2000.
[11]X. Hu, J. Fang, J. and W. Xiong, “Performance Analysis of IEEE 802.15.4 with the Unslotted CSMA/CA for Mobile Vehicle”, ICCVE 2014, pp. 902– 903, 2014.
[12]IEEE 802.11 WG part 11b. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Higher Speed PHY Layer Extension in the 2.4 GHz Band, http://www.ieee802.org/11, 1999
[13]IEEE Standard 802.15.4-2996, September, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), http://www.ieee802.org/15, 2006.
[14]C. Intanagonwiwat, R. Govindan and D. Estrin, “Directed diffusion: A scalable and robust communication paradigm for sensor networks”, MobiCom'00, pp. 56– 67, 2000.
[15]H. Kour, H. and A. K. Sharma, “Hybrid Energy Efficient Distributed Protocol for Heterogeneous Wireless Sensor Network”, International Journal of Computer Applications, Vol. 4, No. 6, pp. 37– 41, 2010.
[16]N. Kushalnagaret, G. Montenegrol and C. Schumacher, “IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals”, IETF RFC 4919.
[17]B. Latré, P. De Mil, I. Moerman, B. Dhoedt and P. Demeester, “Throughput and Delay Analysis of Unslotted IEEE 802.15.4”, Journal of Networks, Vol. 1, No. 1, pp. 20– 28, 2010.
[18]B. Lauwens, B. Scheers and A. Van de Capelle, “Performance analysis of unslotted CSMA/CA in wireless networks”, Telecommunications systems, Vol. 44, pp. 109– 123, 2010.
[19]S. Lindsey and C. S. Raghavendra, “PEGASIS: Power Efficient Gathering in Sensor Information Systems”, IEEE Aerospace Conference, Vol. 3, pp. 1125– 1130, 2002.
[20]G. Lu, B. Krishnamachari and C. S. Raghavendra, “Performance evaluation of the IEEE 802.15.4 MAC for low-rate low-power wireless networks”, IEEE IPCCC 2004, pp. 701– 706, 2004.
[21]A. Manjeshwar and D.P. Agrawal, “TEEN: A Protocol for Enhanced Efficiency in Wireless Sensor Networks”, IPDPS 2001, pp. 2009– 2015, 2001.
[22]M. N. Kumar, V.S. Sheeba, and S. Swapna Kumar, “Energy Efficient MAC Protocol (D-MAC) for Wireless Sensor Network”, International Journal of Information Technology and Engineering, Vol. 2, No. 1, pp. 27– 31, 2011.
[23]S. Okdem, “A real-time noise resilient data link layer mechanism for unslotted IEEE 802.15.4 networks”, International Journal of Communication Systems, John Wiley & Sons, DOI: 10.1002/dac.2955, 2015.
[24]P. Park, P. Di Marco, C. Fischione and K. H. Johansson, “Delay Analysis of Slotted IEEE 802.15.4 with a Finite Retry Limit and Unsaturated Traffic”, IEEE Globecom 2009, pp. 1– 8, 2009.
[25]P. Park, P. Di Marco, C. Fischione and K. H. Johansson, “A generalized Markov chain model for effective analysis of slotted IEEE 802.15.4”, IEEE MASS 2009, pp. 130– 139, 2009.
[26]J. Polastre, J. Hill and D. Culler, “Versatile low power media access for wireless sensor networks”, ACM SenSys 2004, pp. 95– 107, 2004.
[27]C. Schurgers and M. B. Srivastava, “Energy efficient routing in wireless sensor networks”, MILCOM 2001, Vol. 1, pp. 357– 361, 2001.
[28]R. Shah and J. Rabaey, “Energy Aware Routing for Low Energy Ad Hoc Sensor Networks”, WCNC 2002, Vol. 1, pp.350– 355, 2002.
[29]E. Srivastava and A. Kumar, “Performance Analysis of Beacon-Less IEEE 802.15.4 Multi-Hop Network”, COMSNETS 2012, pp. 1– 10, 2012.
[30]A. Varga, “The OMNeT++ Discrete Event Simulation System”, ESM'2001, pp. 319– 324, 2001.
[31]W. Ye, J. Heidemann and D. Estrin, “An energy- efficient mac protocol for wireless sensor networks”, INFOCOM, Vol.3, pp. 1567– 1576, 2002.
[32]H. Zhai, Y. Kwon and Y. Fang, “Performance Analysis of IEEE 802.11 MAC protocol in wireless LANs”, Wireless Computer and Mobile Computing, 2003.
[33]ZigBee Specification, ZigBee Alliance, http://www.caba.org/standard/zigbee.html, 2005.