Enhancement of S13 Quantum Key Distribution Protocol by Employing Polarization, Secrete Key Disclosure and Non-repudiation

Full Text (PDF, 476KB), PP.18-27

Views: 0 Downloads: 0

Author(s)

Bello A. Buhari 1,* Afolayan Ayodele Obiniyi 2 Sahalu B. Jubaidu 2 Armand F. Donfack Kana 2

1. Usmanu Danfodiyo University/Department of Computer Science, Sokoto, 234, Nigeria

2. Ahmadu Bello University /Department of Computer Science, Zaria, 234, Nigeria

* Corresponding author.

DOI: https://doi.org/10.5815/ijwmt.2023.04.03

Received: 6 Nov. 2022 / Revised: 18 Dec. 2022 / Accepted: 3 Mar. 2023 / Published: 8 Aug. 2023

Index Terms

S13, Quantum Key Distribution, Quantum Cryptography, Polarization, XORing

Abstract

Quantum cryptography is the most convenient resolution for information security systems that presents an ultimate approach for key distribution. Today, the most viable key distribution resolutions for information security systems are those based on quantum cryptography. It is based on the quantum rules of physics rather than the assumed computational complexity of mathematical problems. But, the initial BB84 quantum key distribution protocol which is the raw key exchange of S13 quantum key distribution protocol has weakness of disclosure of large portion of secrete key or eavesdropping. Also, it cannot make use of most of the generated random bit. This paper enhanced S13 quantum key distribution protocol by employing polarization, secrete key disclosure and non-repudiation. The use of biometric or MAC address ensures non-repudiation. The row key exchange part of the S13 quantum key distribution which is the same as BB84 is enhanced by employing polarization techniques to make use of most of the generated random bit. Then, the tentative final key generated at the end of error estimation phase should be divided into blocks, padding, inverting the last bit of each block and XORing the block to generate a totally different key from the tentative one. Also, the random bits will be from biometric or serve MAC address respectively. The enhanced S13 quantum key is evaluated using cryptanalysis which shows that the enhanced protocol ensures disclosures of large portion of secrete key to prevent eavesdropping, utilization of most of the chosen binary strings to generate strong key and safeguarding against impersonation attack.

Cite This Paper

Bello A. Buhari, Afolayan A. Obiniyi, Sahalu B. Jubaidu, Armand F. Donfack Kana, "Enhancement of S13 Quantum Key Distribution Protocol by Employing Polarization, Secrete Key Disclosure and Non-repudiation ", International Journal of Wireless and Microwave Technologies(IJWMT), Vol.13, No.4, pp. 18-27, 2023. DOI:10.5815/ijwmt.2023.04.03

Reference

[1]Buhari, B. A., Obiniyi, A. A., Junaidu, S. B., & Roko, A. (2020). Elgamal Cryptographic Scheme based on Quantum Key Distribution (QKD). IAR Journal of Engineering and Technology, 1(4).
[2]Shor, P. W. (1994, November). Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science (pp. 124-134). Ieee.
[3]Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., ... & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510.
[4]Roumestan, F., Ghazisaeidi, A., Renaudier, J., Vidarte, L. T., Leverrier, A., Diamanti, E., & Grangier, P. (2022). Experimental Demonstration of Discrete Modulation Formats for Continuous Variable Quantum Key Distribution. arXiv preprint arXiv:2207.11702.
[5]Abbas, S. A., & Al-Shareefi, N. A. (2022). Secure quantum key distribution system by applying decoy states protocol. Telkomnika, 20(4).
[6]Ren, S., Wang, Y., & Su, X. (2022). Hybrid quantum key distribution network. Science China Information Sciences, 65(10), 1-7.
[7]Christensen, R. B., & Popovski, P. (2022). Private Randomness Agreement and its Application in Quantum Key Distribution Networks. arXiv preprint arXiv:2210.05408.
[8]Cao, Y., Zhao, Y., Zhang, J., & Wang, Q. (2022). Demonstration of SDN-Based Heterogeneous Quantum Key Distribution Chain Orchestration over Optical Networks. arXiv preprint arXiv:2209.09528.
[9]Saha, K., Ghosh, S. S., & Shaw, D. K. (2018). QUANTUM KEY DISTRIBUTION SCHEME: AN IMPROVEMENT BASED ON BB84 PROTOCOL. International Journal of Advanced Research in Computer Science, 9(2).
[10]Abdullah, A. A., & Jassem, Y. H. (2019). Enhancement of quantum key distribution protocol BB84. Journal of Computational and Theoretical Nanoscience, 16(3), 1138-1154.
[11]Guskind, J., & Krawec, W. O. (2022). Mediated semi-quantum key distribution with improved efficiency. Quantum Science and Technology, 7(3), 035019.
[12]Xu, F., Zhang, Y. Z., Zhang, Q., & Pan, J. W. (2022). Device-Independent Quantum Key Distribution with Random Postselection. Physical Review Letters, 128(11), 110506.
[13]Wang, B., Zhang, B. F., Zou, F. C., & Xia, Y. (2021). A kind of improved quantum key distribution scheme. Optik, 235, 166628.
[14]Kumar, A., Dadheech, P., Singh, V., Poonia, R. C., & Raja, L. (2019). An improved quantum key distribution protocol for verification. Journal of Discrete Mathematical Sciences and Cryptography, 22(4), 491-498.
[15]Tannous, C., & Langlois, J. (2019). Quantum Key Distribution Protocol Optimization. Annalen der Physik, 531(4), 1800334.
[16]Abdullah, A. A., Khalaf, R. Z., & Habib, H. B. (2019, March). Modified BB84 quantum key distribution protocol using legendre symbol. In 2019 2nd Scientific Conference of Computer Sciences (SCCS) (pp. 154-157). IEEE
[17]Trushechkin, A. S., Tregubov, P. A., Kiktenko, E. O., Kurochkin, Y. V., & Fedorov, A. K. (2018). Quantum-key-distribution protocol with pseudorandom bases. Physical Review A, 97(1), 012311.
[18]Meslouhi, A., Amellal, H., Hassouni, Y., El Baz, M., & El Allati, A. (2016). Quantum key distribution protocol using random bases. International Journal of Modern Physics B, 30(10), 1650061.
[19]Esteban, E., & Serna, H. (2012). Quantum Key Distribution protocol with private-public key. arXiv preprint arXiv:0908.2146.
[20]Ahonen, O., Möttönen, M., & O’Brien, J. L. (2008). Entanglement-enhanced quantum key distribution. Physical Review A, 78(3), 032314.
[21]Wu, T. W., & Wu, G. H. (2008, September). An improved quantum key distribution protocol. In Optics and Photonics for Information Processing II (Vol. 7072, p. 707214). International Society for Optics and Photonics.
[22]Bennett, C. H., & Brassard, G. (1984, December). Quantum cryptography. In Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India (pp. 175-179).
[23]Verma, P. K., El Rifai, M., & Chan, K. W. C. (2018). Quantum Key Distribution. Signals and Communication Technology, 59–84. doi:10.1007/978-981-10-8618-2_3
[24]Serna, E. H. (2013). Quantum key distribution from a random seed. arXiv preprint arXiv:1311.1582.
[25]Singh, H., Gupta, D. L., & Singh, A. K. (2014). Quantum key distribution protocols: a review. Journal of Computer Engineering, 16(2), 1-9.
[26]Mina, M. Z., & Simion, E. (2020, November). A Scalable Simulation of the BB84 Protocol Involving Eavesdropping. In International Conference on Information Technology and Communications Security (pp. 91-109). Springer, Cham.