International Journal of Mathematical Sciences and Computing(IJMSC)

ISSN: 2310-9025 (Print), ISSN: 2310-9033 (Online)

Published By: MECS Press

IJMSC Vol.4, No.1, Jan. 2018

A Secure Communication Scheme using Generalized Modified Projective Synchronization of Coupled Colpitts Oscillators

Full Text (PDF, 589KB), PP.56-70

Views:77   Downloads:6


Kammogne Soup Tewa Alain, Fotsin Hilaire Bertrand

Index Terms

Chaotic system;Linear transformation;Generalized Modified Projective Synchronization (GMPS);Secure communication;Parameters estimation


A new scheme for secure information transmission is proposed using the generalized modified projective synchronization (GMPS) method. The linear transformation of the modified Colpitts oscillator, first introduced in Cristinel and Radu (Low-Power Realizations of Secure Chaotic Communication Schemes. IEEE Asia Pacific Conference on Circuits and Systems, 2000) is investigated prior to the more detailed study by Kammogne et al. (Journal of chaos. (2014). doi: 10.1155/2014/659647). This circuit is employed to encrypt the information signal. In the receiver end, by designing the controllers and the parameter update rule, GMPS between the transmitter and receiver systems is achieved and the unknown parameters are estimated simultaneously. Based on the Lyapunov stability theory, the controllers and corresponding parameters update rule are constructed to achieve generalized modified projective synchronization between the transmitter and receiver system with uncertain parameters. The original information signal can be recovered successfully through some simple operations by the estimated parameter. The message signal can be finally recovered by the identified parameter and the corresponding demodulation method. Numerical simulations are performed to show the validity and feasibility of the presented secure communication scheme.

Cite This Paper

Kammogne Soup Tewa Alain, Fotsin Hilaire Bertrand,"A Secure Communication Scheme using Generalized Modified Projective Synchronization of Coupled Colpitts Oscillators", International Journal of Mathematical Sciences and Computing(IJMSC), Vol.4, No.1, pp.56-70, 2018.DOI: 10.5815/ijmsc.2018.01.04


[1]Pecora LM, Carroll TL: Synchronization in chaotic systems. Phys Rev Lett1990, 64(8):821-824. 10.1103/PhysRevLett.64.821.

[2]Ge Z, Chang C: Generalized synchronization of chaotic systems by pure error dynamics and elaborate Lyapunov function. Nonlinear Anal Theory Methods Appl2009, 71(11):5301-5312. 10.1016/ 

[3]Breve FA, Zhao L, Quiles MG, Macau EEN: Chaotic phase synchronization and desynchronization in an oscillator network for object selection. Neural Netw2009, 22(5-6):728-737. 10.1016/j.neunet.2009.06.027 

[4]Ren Q, Zhao J: Impulsive synchronization of coupled chaotic systems via adaptive feedback approach. Phys Lett A 2006, 355(4-5):342-347. 10.1016/j.physleta.2006.02.053 

[5]Li C, Liao X, Wong K: Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. Physica D Nonlinear Phenom 2004, 194(3-4):187-202. 10.1016/j.physd.2004.02.005 

[6]Mainieri R, Rehacek J: Projective synchronization in three-dimensional chaotic systems. Phys Rev Lett 1999, 82(15):3042-3045. 10.1103/PhysRevLett.82.3042

[7]Xu D: Control of projective synchronization in chaotic systems. Phys Rev E 2001, 63: 27201-27204.

[8]Deepa B. Patil, Yashwant V. Dongre. A Fuzzy Approach for Text Mining. International Journal of Mathematical Sciences and Computing (IJMSC), Vol.1, No.4, pp.34-43, 2015.DOI: 10.5815/ijmsc.2015.04.04

[9]Chee CY, Xu D: Secure digital communication using controlled projective synchronization of chaos. Chaos Soliton Fract 2005, 23(3):1063-1070. 

[10]Chen J, Jiao L, Wu J, Wang X: Projective synchronization with different scale factors in a driven-response complex network and its application in image encryption. Nonlinear Anal Real World Appl 2010, 11(4):3045-3058. 10.1016/j.nonrwa.2009.11.003.

[11]Hoang TM, Nakagawa M: A secure communication system using projective-lag and/or projective anticipating synchronizations of coupled multidelay feedback systems. Chaos Soliton Fract 2008, 38(5):1423-1438. 10.1016/j.chaos.2008.02.008.

[12]Li Z, Xu D: A secure communication scheme using projective chaos synchronization. Chaos Soliton Fract 2004, 22(2):477-481. 10.1016/j.chaos.2004.02.019.

[13]Xiangjun Wu1, Zhengye Fu and Jürgen Kurths: A secure communication scheme based generalized function projective synchronization of a new 5D hyperchaotic system. Phys. Scr. 90 (2015) 045210 (12pp).

[14]Chou H.G,  Chuang C.F, Wang W.J,  Lin J.C: A fuzzy-model-based chaotic synchronization and Its implementation on a secure communication system. IEEE Trans. Signal processing society 2013, 8: 2177–2185.

[15]Skardal P.S, Taylor D, Sun J: Optimal synchronization of directed complex networks, Chaos 2016, 26: 094807. 

[16]Kammogne S.T, Kengne R., Fotsin H.B: Dynamics and Robust Adaptive Control Strategy for the Finite Time Synchronization of Uncertain Nonlinear Systems. International Journal of System Dynamics Applications, 6(4), 34-62 2017, DOI: 10.4018/IJSDA.2017100103

[17]Cuomo K.M, Oppenheim A.V: Chaotic signals and systems for communications. Proc. of International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, (1993).

[18]Parlitz U, Kocarev L, Stojanovski T, Preckel H: Encoding messages using chaotic synchronization. Phys. Rev. 1996, E53: 4351.

[19]Alvarez G, Li S. Some basic cryptographic requirements for chaos-based cryptosystems. International Journal of Bifurcation and Chaos, 2006, 16:2129–2151.

[20]Ritu Goyal, Mehak Khurana: Cryptographic Security using Various Encryption and Decryption Method. International Journal of Mathematical Sciences and Computing (IJMSC), Vol.3, No.3, pp. 1-11, 2017.DOI: 10.5815/ijmsc.2017.03.01

[21]Megam N, Fotsin H.B, Louodop P: Implementing a memristive Van der Pol oscillator coupled to a linear oscillator: synchronization and application to secure communication Phys. 2014, Scr. 89.

[22]Kammogne S.T, Fotsin H. B: Adaptive control for modified projective synchronization-based approach for estimating all parameters of a class of uncertain systems: Case of modified colpitts oscillators, Journal of Chaos 2014, 2014:1-13.

[23]Kammogne S.T, Fotsin H.B: Synchronization of modified Colpitts oscillator with structural perturbations. 2011; Physica scripta 83:65011-65018.

[24]Ababei C, Marculescu R: Low-Power Realizations of Secure Chaotic Communication Schemes”. University of Minnesota, IEEE. (2000), 30-33.

[25]Kennedy M.P: Chaos in the Colpitts Oscillator. Fundamental Theory and Applications, 1994, 41(11): 771-778.