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Abstract — A modification of the neo-fuzzy neuron is proposed 

(an extended neo-fuzzy neuron (ENFN)) that is characterized by 

improved approximating properties. An adaptive learning 

algorithm is proposed that has both tracking and smoothing 

properties and solves prediction, filtering and smoothing tasks 

of non-stationary “noisy” stochastic and chaotic signals. An 

ENFN distinctive feature is its computational simplicity 

compared to other artificial neural networks and neuro-fuzzy 

systems. 
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I. INTRODUCTION 

Artificial neural networks (ANNs) are currently widely 

used for solving different Data Mining tasks due to their 

approximating capabilities and their ability to learn from 

experimental data [1-3]. However, when the data come 

sequentially in real time, many neural networks lose their 

effectiveness because of the multiepoch learning (which 

is used in many ANNs and designated only for a batch 

mode). Of course, radial-basis-function networks (RBFN) 

could be used in such situations. These ANNs are 

characterized by a high speed of learning processes, but, 

first of all, these networks suffer from the so-called 

«curse of dimensionality» and, secondly, even a trained 

neural network is a «black box», and its results can not be 

interpreted. Hybrid systems of computational intelligence 

[5-7], and above all neuro-fuzzy systems (NFSs), 

combining the advantages of ANNs and fuzzy inference 

systems (FISs), do not suffer from the “curse of 

dimensionality” and provide linguistic interpretability and 

transparency of the results. However, since most of the 

well-known NFSs are trained with the help of  the error 

backpropagation concept, they are ill-equipped to work in 

an online mode. 

Due to the above mentioned problems, we would like 

to develop hybrid systems of computational intelligence 

that deal with processing the incoming data in an online 

mode and have advantages of both ANNs and NFSs. 

The remainder of this paper is organized as follows: 

Section 2 gives a neo-fuzzy neuron architecture. Section 

3 describes an extended neo-fuzzy neuron architecture. 

Section 4 presents experiments and evaluation. 

Conclusions and future work are given in the final section. 

II. THE NEO-FUZZY NEURON ARCHITECTURE 

To overcome the above mentioned problems, a neuro-

fuzzy system called by the authors a “neo-fuzzy neuron 

(NFN)” was introduced in [8 – 10]. The architecture of 

the neo-fuzzy neuron is in fig.1. 

 

 

Fig. 1. A neo-fuzzy neuron 

 

The neo-fuzzy neuron is a nonlinear learning system 

with multiple inputs and one output  that implements the 

mapping 
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where 
ix  is the i-th component of the n-dimensional 

input signal vector  1,..., ,...,
T n

i nx x x x R  , ŷ  is a 

scalar NFN output. The NFN structural blocks are 

nonlinear synapses iNS  that carry out a nonlinear 

transformation of the i-th component of ix  in the form 
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where liw  is the l-th synaptic weight of the i-th 

nonlinear synapse, 1,2,...,l h , 1,2,...,i n ;  li ix  is 
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the l-th membership function in the i-th nonlinear synapse 

performing fuzzification of a crisp component 
ix . Thus, 

transformation implemented by the NFN can be written 

as 

 
1 1

ˆ
n h

li li i

i l

y w x
 

 .                                                  (3) 

Fuzzy inference implemented by the same NFN has the 

form 

IF 
ix  IS 

liX  THEN THE OUTPUT IS 

, 1,2,...,liw l h ,                                                         (4) 

which means that a nonlinear synapse actually 

implements the zero-order Takagi-Sugeno fuzzy 

inference [11, 12]. 

The NFN authors [8–10] used traditional triangular 

constructions as membership functions that meet the 

unity partition conditions 
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where 
lic  stands for arbitrarily selected (usually 

uniformly distributed) centers of the membership 

functions in the interval [0, 1] , thus, naturally 0 1ix  . 

Such a choice of the membership functions leads to the 

fact that the i-th component of the input signal ix  

activates only two adjacent functions, thus their sum is 

equal to 1 which means that 

   1, 1li i l i ix x                                                    (6) 

and 

     1, 1,i i li li i l i l i if x w x w x    .                           (7) 

Just exactly this circumstance allows to synthesize 

simple and effective adaptive controllers for nonlinear 

control objects [13, 14]. 

One can use other membership functions except 

triangular constructions, first of all, B-splines [15] that 

proved their effectiveness in the neo-fuzzy neurons [16]. 

A general case of the membership functions based on the 

q-th degree B-spline can be presented in the form 
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When 2q  , we obtain the traditional triangular 

functions. It should be mentioned that B-splines also 

provide the unity partition in the form 
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l
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they are non-negative which means that 

 , 0B

li ix q   

and have a local support 

 , 0B

li ix q   for ,,i li l q ix c c 
   . 

When the vector signal 

        1 ,..., ,...,
T

i nx k x k x k x k  ( 1,2,...k  – the 

current discrete time) is fed to the NFN input, a scalar 

value is calculated at the NFN output 
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where  1liw k   is the current value of adjusted 

synaptic weights that were obtained from a learning 

procedure of the previous  1k   observations. 

Introducing a  1nh  – membership functions vector 
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     ,...,
T

li i hn nx k x k  and a corresponding 

synaptic weights vector 
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 , 1
T

hnw k  , we can write the transformation (9) 

implemented by the NFN in a compact form 

      ˆ 1Ty k w k x k  .                                      (10) 

To adjust the neo-fuzzy neuron parameters, the authors 

used a gradient procedure that minimizes the learning 

criterion 
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and has the form 
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where  y k  is an external reference signal,  e k is a 

learning error,   is a learning rate parameter. 
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A special algorithm was proposed in [17] to accelerate 

the NFN learning procedure which has both tracking (for 

non-stationary signal processing) and filtering properties 

(for "noisy" data processing) 
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When 0  , the algorithm (13) is identical to the one-

step Kaczmarz-Widrow-Hoff learning algorithm [18] and 

when 1   – to the Goodwin-Ramage-Caines stochastic 

approximation algorithm [19]. 

It should be mentioned that one can use many other 

learning and identification algorithms including the 

traditional least-squares method with all modifications to 

train the NFN synaptic weights. 

 

III. AN EXTENDED NEO-FUZZY NEURON 

As mentioned above, the NFN nonlinear synapse 
iNS  

implements the zero-order Takagi-Sugeno inference thus 

being the elementary Wang-Mendel neuro-fuzzy system 

[20–22]. It is possible to improve approximating 

properties of such a system by using a special structural 

unit which we called an “extended nonlinear synapse” 

( ,iENS fig.2) and to synthesize an “extended neo-fuzzy 

neuron” (ENFN) that contains 
iENS  elements instead of 

usual nonlinear synapses
iNS  (fig.3). 

 

 

Fig. 2. An extended neo-fuzzy synapse 

 

 

Fig. 3. An extended neo-fuzzy neuron 

 

Introducing additional variables 
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it can be written 
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where  
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It’s easy to see that the ENFN contains  1p hn  

adjusted synaptic weights and the fuzzy inference 

implemented by each 
iENS  has the form 

0 1 ... , 1,2,...,

i li

p p

li li i li i

IF x IS X THEN THE OUTPUT IS

w w x w x l h   
                 (20) 

which coincides with the  p-order Takagi-Sugeno 

inference. 

The ENFN has a much simpler architecture than a 

traditional neuro-fuzzy system that simplifies its 

numerical implementation. 

When the vector signal  x k  is fed to the ENFN input, 

a scalar value is calculated at the ENFN output 

      ˆ 1Ty k w k x k                                          (21) 

wherein this expression differs from the expression (10) 

by the fact that it contains  1p   times more adjusted 

parameters than the conventional NFN. It is clear that the 

algorithm (13) may be used for training ENFN 

parameters obtaining the form in this case 
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IV.  EXPERIMENT AND ANALYSIS 

To demonstrate the efficiency of the proposed adaptive 

neuro-fuzzy system and its learning procedure (22), we 

have implemented a simulation test based on forecasting 

of a chaotic process defined by the Mackey-Glass 

equation [23] 
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The signal defined by (22) was quantized with a step 

0.1. We took a fragment containing 12000 points. The 

goal was to predict a time-series value on the next step 

1k   using its values on steps 3k  , 2k  , 1k  , and k . 

First 7000 points were used as a training set (for 

adjusting weight coefficients of the architecture), next 

5000 points were used as a test set (7001-12000) without 

adjusting weight coefficients. p  is a fuzzy inference 

order, a number of membership functions h  is 3, a 

smoothing parameter   is 0.9 during the weight 

adaptation procedure in (21). 

We implement one step prediction in all our 

experiments. 

Symmetric mean absolute percentage error (SMAPE), 

root mean square error (RMSE) and mean square error 

(MSE), used for result evaluation, are shown in Tab.1-5. 

Fig.4-8 present time series outputs, prediction values 

and prediction errors (a time series value is marked with a 

blue color, a prediction value is marked with a green 

color, a prediction error is marked with a red color). 

The proposed algorithm gives the close approximation 

and the high prediction quality of sufficiently non-

stationary processes in an online mode. 

 
Table 1. Prediction results of the Mackey-Glass time series 

 RMSEtest MSEtest SMAPEtest 

p=0 0.0105742 0.0022596 7.4159348 

p=1 0.0064418 0.0004191 3.5964145 

p=2 0.0007427 0.0003537 3.3670534 

p=3 0.0001568 0.0004181 3.6279506 

p=5 0.0009585 0.0005421 4.0177900 

 

Fig. 4. The Mackey-Glass time series prediction 

(p = 3, h = 3,   = 0.9). 

 

The first Narendra object [24] is the dynamic plant 

identification problem and is described by the equation 

        21 / 1y k y k y k f k                           (24) 

where 
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.
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f k k k
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


 

 
Table 2. Prediction results of the Narendra object 

 RMSEtest MSEtest SMAPEtest 

p=0 0.0025481 0.0021746 18.347822 

p=1 0.0051009 0.0026075 11.220434 

p=2 0.0012913 0.0012601 5.5851695 

p=3 0.0009847 0.0011488 5.5871958 

p=5 0.0006739 0.0010488 5.5533630 

 

A generated sequence contains 2000 values. We used 

   3sin / 250f k k for the first 500 points (a training 

set, 1...500k  )  

and      0.8sin / 250 0.2sin / 25f k k k   for a 

test set ( 501...2000k  ). 

Fig. 5. The Narendra time series prediction 

(p = 3, h = 3,  = 0.9). 

 

The second Narendra plant is assumed to be in the 

form 

       

   

3 2 , 1 , ,

3 , 2

y k f y k y k y k
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where 

      2 2

1 2 3 4 5 1 2 4 5 3 4 3 2, , , , 1 / 1 .f x x x x x x x x x x x x x      

A generated sequence contains 1500 values. The input 

to the plant is given by    sin / 25u k k for 250k  , 

  1u k   for 250 500k  ,   1u k    for 

501 750k   and 

       0.4sin / 25 0.1sin / 32 0.6sin /10u k k k k    

 for 751k  . 

 
Table 3. Prediction results of the Narendra object 

 RMSEtest MSEtest SMAPEtest 

p=0 0.0024681 0.0067067 14.5441772 

p=1 0.0049146 0.0054865 12.4697803 

p=2 0.0017915 0.0023304 9.3855439 

p=3 0.0015882 0.0023559 9.4933733 

p=5 0.0014513 0.0024112 9.5267278 
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Fig.6. The Narendra time series prediction 

(p = 3, h = 3,  = 0.9). 

 

The third Narendra object is described by the equation 

        21 / 1y k y k y k f k                           (26) 

where 
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k k otherwise
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
 

A generated sequence contains 4000 values. 

 
Table 4. Prediction results of the Narendra object 

 RMSEtest MSEtest SMAPEtest 

p=0 0.0015450 0.0012522 11.3478218 

p=1 0.0028319 0.0016039 14.2204343 

p=2 0.0010964 0.0007985 6.4813514 

p=3 0.0008922 0.0007470 6.5637786 

p=5 0.0006855 0.0007125 6.6079069 

 

Fig.7. The Narendra time series prediction 

(p = 5, h = 3,  = 0.9). 

 

The forth Narendra object is described in the form 

        

 

21 / 1 sin 2 / 25

sin 2 /10

y k y k y k k

k




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
      (27) 

A generated sequence contains 500 values. 

 
Table 5. Prediction results of the Narendra object 

 RMSEtest MSEtest SMAPEtest 

p=0 0.0080359 0.0214440 25.1994989 

p=1 0.0114304 0.0194163 25.3300074 

p=2 0.0017572 0.0104677 20.2466940 

p=3 0.0010388 0.0106037 20.2904977 

p=5 8.6533285 0.0109404 20.4180131 

 

Fig.8. The Narendra time series prediction 

(p = 5, h = 3,  = 0.9). 

 

As it can be seen from the fig.4-8, the ENFN 

approximating properties are better when compared to the 

traditional NFN architecture which is in fact an ENFN 

special case (the NFN implements the zero-order Takagi-

Sugeno fuzzy inference, p=0). 

 

VI. CONCLUSION 

The architecture of an extended neo-fuzzy neuron is 

proposed in the paper which is a generalization of the 

standard neo-fuzzy neuron in a case of the “above zero”-

order fuzzy inference. The learning algorithm is proposed 

that is characterized by both tracking and filtering 

properties. The extended NFN has improved 

approximating properties, it’s characterized by a high 

learning rate, it also has simple numerical implementation. 
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