Digital Electro-Hydraulic (DEH) Modeling as a Steam Turbine Governor Control at PLTU Tanjung Enim 3x10MW Using MatLab

Full Text (PDF, 883KB), PP.1-13

Views: 0 Downloads: 0

Author(s)

Destra A. Pratama 1,* Dewi P. Sari 1 Kabul. Abdullah 1

1. Electrical Engineering of Polytechnic Sriwijaya, Jalan Srijaya Negara, Bukit Besar, Palembang 30139, Indonesia

* Corresponding author.

DOI: https://doi.org/10.5815/ijieeb.2022.06.01

Received: 7 Aug. 2022 / Revised: 2 Sep. 2022 / Accepted: 13 Oct. 2022 / Published: 8 Dec. 2022

Index Terms

Digital Electro-Hydraulic, Governor, Control Valve, PID, Power Control, Speed Control.

Abstract

Control of the Steam Turbine at PLTU Tanjung Enim 3x10 MW through the use of Digital Electro-Hydraulic (DEH), which plays a critical role in the functioning of the Steam Turbine generated. Because the current control operates solely by manual loading adjustment by raising or reducing the PID percentage from DEH, it is essential to analyze the input parameter values to improve the DEH PID control's sensitivity. The DEH control mechanism of PLTU TE 3x10MW is divided into two modes: Valve Limiter and Load. At PLTU TE 3x10MW, the steam turbine frequently experiences hunting (fluctuations) on the governor control valve, causing the turbine unit to become unstable until shutdown or blackout. The DEH signal response to actuator stroking can generally operate according to the given signal command with a signal density of 1/ΔT = 100,298 Hz and ΔY/ΔT = 781,016 ms. By analyzing the DEH system in the unit and modeling it using Matlab, it is hoped that it will produce a PID control value that can be input into the system based on the return signal from the actuator stroking level and the steam turbine speed at the time of loading, thus enabling the control valve or governor to be more responsive and smoother in responding of Mining load changes, either manually or automatically.

Cite This Paper

Destra A. Pratama, Dewi P. Sari, Kabul. Abdullah, "Digital Electro-Hydraulic (DEH) Modeling as a Steam Turbine Governor Control at PLTU Tanjung Enim 3x10MW Using MatLab", International Journal of Information Engineering and Electronic Business(IJIEEB), Vol.14, No.6, pp. 1-13, 2022. DOI:10.5815/ijieeb.2022.06.01

Reference

[1]G. Cox, L. Wiley, N. York, and A. C. Fernandez-pello, “Optimization of DEH control system based on DCS steam turbine,” 1995, [Online]. Available: http://www.zjnyxb.cn/EN/
[2]M. Fahreza, Hamdani, and Z. Tharo, “Pemodelan dan Pengendalian Frekuensi sistem tenaga listrik pada Simulator Pembangkit Listrik Tenaga Uap,” pp. 233–236, 2019.
[3]S. Sadono and N. Effendy, “Identifikasi Sistem Governor Control Valve Dalam Menjaga Kestabilan Putaran Turbin Uap PLTP Wayang Windu Unit 1,” Teknofisika, vol. 2, no. 3, pp. 83–90, 2013.
[4]I. Journal, O. F. Engineering, C. Of, and S. Turbine, “problem of high vibrations in servo system at over loading,” vol. 7, no. 3, pp. 309–314, 2018.
[5]C. Yin and J. Liu, “Study on Valve Management of DEH for Steam Turbine,” Energy Power Eng., vol. 05, no. 04, pp. 319–323, 2013, doi: 10.4236/epe.2013.54b063.
[6]M. Dulau and D. Bica, “Simulation of Speed Steam Turbine Control System,” Procedia Technol., vol. 12, pp. 716–722, 2014, doi: 10.1016/j.protcy.2013.12.554.
[7]D. D. Istiawan, R. Syahputra, and K. T. Putra, “Analysis of Steam Power Generators in Fulfilling Electricity Needs : A Case Study at PT Madubaru Yogyakarta , Indonesia,” vol. 1, no. 4, pp. 189–195, 2017.
[8]S. T. Saputro, “Pengendalian Laju Aliran Massa Uap Masuk Intermediate Pressure Turbine ( Ipt ) Pada Pembangkit Listrik Tenaga Uap Berbasis Distributed Control System ( Dcs ),” no. I, pp. 149–160, 2015.
[9]S. Reddy, I. Ahmed, T. S. Kumar, a V. K. Reddy, and V. V. P. Bharathi, “Analysis Of Steam Turbines 1,” Int. Ref. J. Eng. Sci., vol. 3, no. 2, pp. 32–48, 2014.
[10]I. Engineering, “Speed Controller Design for Steam Turbine,” Int. J. Adv. Res. Electr. Electron. Instrum. Energy, vol. 2, pp. 4400–4409, 2013.
[11]F. L. Everett, B Woodruff; Herbert, B Lammers; Thomas, Steam Plant Operation, 8th Editio.
[12]M. Pondini, A. Signorini, and V. Colla, “Steam Turbine control valve and actuation system modeling for dynamics analysis,” Energy Procedia, vol. 105, pp. 1651–1656, 2017, doi: 10.1016/j.egypro.2017.03.539.
[13]R. B. Walters, Hydraulic and Electric-Hydraulic Control Systems. 2000. doi: 10.1007/978-94-015-9427-1.
[14]A. Feyo, A. R. Thelkar, C. Bharatiraja, and Y. Adedayo, “Reference design and comparative analysis of model reference adaptive control for steam turbine speed control,” FME Trans., vol. 48, no. 2, pp. 329–341, 2020, doi: 10.5937/FME2002329F.
[15]M. T. Nguyen, T. D. Dang, and K. K. Ahn, “Application of electro-hydraulic actuator system to control continuously variable transmission in wind energy converter,” Energies, vol. 12, no. 13, 2019, doi: 10.3390/en12132499.
[16]G. V. Patil and N. R. Kulkarni, “Simulation of Electro-Hydraulic Turbine Control ( EHTC ) System,” Ijaeee, vol. 2, no. 2, pp. 292–299, 2013.
[17]M. A. Lilo, “Using Vibration Signal with EHC System to,” no. 6, pp. 1805–1815, 2014.
[18]S. Salleh, M. F. Rahmat, S. M. Othman, and K. A. Danapalasingam, “Review on modeling and controller design of hydraulic actuator systems,” Int. J. Smart Sens. Intell. Syst., vol. 8, no. 1, pp. 338–367, 2015, doi: 10.21307/ijssis-2017-762.
[19]J. Wang, A. Song, and Y. Kang, “Analysis and treatment of jitter for 300MW steam turbine high-pressure control valve,” E3S Web Conf., vol. 271, pp. 7–10, 2021, doi: 10.1051/e3sconf/202127101018.
[20]Z. H. Wang, “Condition analysis of steam turbine digital electro-hydraulic control system based on data fusion,” Appl. Mech. Mater., vol. 602–605, no. Iceep, pp. 954–957, 2014, doi: 10.4028/www.scientific.net/AMM.602-605.954.
[21]C. Ma, C. Liu, and X. Zhang, “Fixed-time feedback control of the hydraulic turbine governing system,” Complexity, vol. 2018, 2018, doi: 10.1155/2018/8767158.
[22]J. Laghari, H. Mokhlis, A. B. H. A. Bakar, and H. Mohammad, “Comparative studies on load frequency control for islanded distribution network connected with mini hydro,” 2011 5th Int. Power Eng. Optim. Conf. PEOCO 2011 - Progr. Abstr., pp. 211–216, 2011, doi: 10.1109/PEOCO.2011.5970388.
[23]B. T. Nanaware, R a , S.R, Sawant , Jadhav, “Modeling of Hydraulic Turbine and Governor for Dynamic Studies of HPP,” Int. Conf. Recent Trends Inf. Technol. Comput. Sci., pp. 6–11, 2012.
[24]S. H. Yanghai Li, “The impact research of control modes in steam turbine control system (digital electric hydraulic) to the low-frequency oscillation of grid _ Enhanced Reader.pdf.” SAGE, 2016. doi: 10.1177/1687814015624835.
[25]W. Ali, H. Farooq, W. Abbas, M. Usama, and A. Bashir, “Journal of Faculty of Engineering & Technology PID VS PI CONTROL OF SPEED GOVERNOR FOR SYNCHRONOUS GENERATOR BASED GRID CONNECTED,” vol. 24, no. 1, pp. 53–62, 2017.
[26]J. Zhao, L. Wang, D. Liu, and J. Wang, “Piecewise Model and Parameter Obtainment of Governor Actuator in Turbine,” J. Appl. Math., vol. 2015, pp. 15–19, 2015, doi: 10.1155/2015/709272.
[27]A. A. Firdaus, “Desain Model Kontrol Governor Dengan Menggunakan Kontroler PID Di PLTU,” Jurnal Intake, vol. 7, no. 2. pp. 33–40, 2016.
[28]R. Arindya, “Penalaan Kendali PID untuk pengendali proses,” J. Teknol. Elektro, vol. 8, no. 2, p. 109, 2017.
[29]D. Zhu and L. Luo, “Design of DEH Test Platform for Steam Turbine ’ s Hydraulic Actuator Valve Use,” vol. 1, no. Icmmbe, pp. 386–391, 2016.
[30]S. M. Rozali, M. F. Rahmat, N. Abdul Wahab, R. Ghazali, and Zulfatman, “PID controller design for an industrial hydraulic actuator with servo system,” Proceeding, 2010 IEEE Student Conf. Res. Dev. - Eng. Innov. Beyond, SCOReD 2010, no. June 2014, pp. 218–223, 2010, doi: 10.1109/SCORED.2010.5704005.