IJEM Vol. 1, No. 2, 8 Apr. 2011
Cover page and Table of Contents: PDF (size: 192KB)
Full Text (PDF, 192KB), PP.1-8
Views: 0 Downloads: 0
Stability, core system, Boolean rule, fMRI, stabilized memory
Activation of how and where arithmetic operations are displayed in the brain has been observed in various number-processing tasks. However, it remains poorly understood whether stabilized memory of Boolean rules are associated with background knowledge. The present study reviewed behavioral and imaging evidence demonstrating that Boolean problem-solving abilities depend on the core systems of number-processing. The core systems account for a mathematical cultural background, and serve as the foundation for sophisticated mathematical knowledge. The Ebbinghaus paradigm was used to investigate learning-induced changes by functional magnetic resonance imaging (fMRI) in a retrieval task of Boolean rules.
Xiuzhen Wang, Weiquan Gu,"The Stability of Boolean Rules Memory Based on the Core Systems of Number-Processing", IJEM, vol.1, no.2, pp.1-8, 2011. DOI: 10.5815/ijem.2011.02.01
[1] C. Tomasi, “Past performance and future results,” Nature vol. 428, pp. 378, 2004.
[2] V. Kostrubiec, J. Tallet, and P.G. Zanone, “How a new behavioral pattern is stabilized with learning determines its persistence and flexibility in memory,” Exp. Brain. Res. vol. 170, pp.238–244, 2006.
[3] S. Dehaene, M. Piazza, P. Pinel, and L. Cohen, “Three parietal circuits for number processing,” Cogn Neuropsychol, vol. 20, pp. 487–506,2003.
[4] L. Feigenson, S. Dehaene, and E. Spelke, “Core systems of number,” Trends Cogn. Sci., vol. 8, pp. 307–314, 2004.
[5] D. Ansari, “Effects of development and enculturation on number representation in the brain,” Nat. Rev. Neurosci., vol. 9,pp. 278–291, 2008.
[6] S. Dehaene, E. Spelke, P. Pinel, R. Stanescu, and S. Tsivkin, “Sources of mathematical thinking: behavioral and brain-imaging evidence,” Science, vol. 284, pp. 970–974, 1999.
[7] O. Gruber, P. Indefrey, P. Steinmetz, and A. Kleinschmidt, “Dissociating neural correlates of cognitive components in mental calculation,” Cereb Cortex, vol. 11, pp. 350–359, 2001.
[8] H. Ebbinghaus, “Memory: A contribution to experimental psychology,” New York: Columbia University Press, 1993.
[9] F. I. M. Craik, and E. Tulving, “Depth of processing and the retention of words in episodic memory,” J. Exp. Psychol., vol. 104,pp. 268–294 1975.
[10] L. Trick, and Z. W. Pylyshyn, “Why are small and large numbers enumerated differently? A limited capacity preattentive stage in vision,” Psychol. Rev., vol. 101, pp. 80–102, 1994.
[11] M. Delazer, and T. Benke, “Arithmetic facts without meaning,” Cortex, vol. 33, pp. 697–710, 1997.
[12] M. H. Sohn, M. V. Albert, K. Jung, C. S. Carter, and J. R. Anderson, “Anticipation of conflict monitoring in the anterior cingulate cortex and the prefrontal cortex,” PNAS, vol. 104, pp. 10330–10334, 2007.
[13] K. J. Friston, A. P. Holmes, J. B. Poline, P. J. Grasby, S. C. R. Willisams, R. S. J. Frackowiak, and R. Turner, “Analysis of fMRI time-series revisited,” NeuroImage, vol. 2, pp. 45–53, 1995.
[14] J. Talairach, and P. Tournoux, “Co-planar stereotaxic atlas of the human brain,” Thieme Medical Publishers, New York, 1988.
[15] J. Lancaster, P. Kochunov, M. Woldorff, M. Liotti, L. Parsons, L. Rainey, D. Nickerson, and P. Fox, “Automatic talairach labels for functional activation sites,” NeuroImage, vol.11, pp. S483, 2000.
[16] T. C. Rickard, S. G. Romero, G. Basso, C. Wharton, S. Flitman, and J. Grafman, “The calculating brain: an fMRI study,” Neuropsychologia, vol. 38, pp. 325–335, 2000.
[17] O. Simon, F. Kherif, G. Flandin, J. B. Poline, D. Riviere, J. F. Mangin, D. Le Bihan, and S. Dehaene, “Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number,” Neuroimage, vol. 23, pp. 1192–1202, 2004.
[18] K. Kucian, T. Loenneker, T. Dietrich, M. Dosch, E. Martin, and M. von Aster, “Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study,” Behav. Brain. Funct., vol. 2, pp. 31, 2006.
[19] L. Zago, M. Pesenti, E. Mellet, F. Crivello, B. Mazoyer, and N. Tzourio-Mazoyer, “Neural correlates of simple and complex mental calculation,” NeuroImage, vol. 13, pp. 314–327, 2001.
[20] E. Mayer, M. Reicherts, G. Deloche, L. Willadino-Braga, I. Taussik, M. Dordain, M. Van Der Linden, and J-M. Annoni, “Number processing after stroke: Anatomoclinical correlations in oral and written codes,” J. Int. Neuropsychol. Soc., vol. 9, pp. 899–912, 2003.
[21] F. Chochon, L. Cohen, P. F. van de Moortele, and S. Dehaene, “Differential contributions of the left and right inferior parietal lobules to number processing,” J. Cogn. Neurosc., vol. 11, pp. 617–630, 1999.
[22] V. Prabhakaran, B. Rypma, and J. D. E. Gabrieli, “Neural substrates of mathematical reasoning: a functional magnetic resonance imaging study of neocortical activation during performance of the necessary arithmetic operations test,” Neuropsychol, vol. 15, pp. 115–127, 2001.
[23] L. Zamarian, E. Stadelmann, H. C. Nürk, N. Gamboz, J. Marksteiner, and M. Delazer, “Effects of age and mild cognitive impairment on direct and indirect access to arithmetic knowledge,” Neuropsychologia, vol. 45, pp. 1511–1521, 2007.
[24] T. Fehr, C. Code, and M. Herrmann, “Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI–BOLD activation,” Brain Res., vol. 1172, pp. 93–102, 2007.
[25] J. Whalen, M. McCloskey, R. P. Lesser, and B. Gordon, “Localizing arithmetic processes in the brain, evidence from a transient deficit during cortical stimulation,” J. Cogn. Neurosci., vol. 9, pp. 409–417, 1997
[26] H. Thogi, K. Saitoh, H. Takahashi, K. Ustugisawa, H. Yonezawa, K. Hatano, and T. Sasaki, “Agraphia and acalculia after a left prefrontal infarction,” J. Neurol Neurosurg Psychiatry, vol. 58, pp. 629–632, 1995.