### International Journal of Intelligent Systems and Applications(IJISA)

*ISSN: *2074-904X (Print), *ISSN: *2074-9058 (Online)

*Published By: *MECS Press

*IJISA Vol.4, No.7, Jun. 2012*

#### Optimal Control of Switched Systems based on Bezier Control Points

Full Text (PDF, 1008KB), PP.16-22

Views:117 Downloads:1

#### Author(s)

#### Index Terms

#### Abstract

This paper presents a new approach for solving optimal control problems for switched systems. We focus on problems in which a pre-specified sequence of active subsystems is given. For such problems, we need to seek both the optimal switching instants and the optimal continuous inputs. A Bezier control points method is applied for solving an optimal control problem which is supervised by a switched dynamic system. Two steps of approximation exist here. First, the time interval is divided into k sub-intervals. Second, the trajectory and control functions are approximatedby Bezier curves in each subinterval. Bezier curves have been considered as piecewise polynomials of degree n, then they will be determined by n+1 control points on any subinterval. The optimal control problem is there by converted into a nonlinear programming problem (NLP), which can be solved by known algorithms. However in this paper the MATLAB optimization routine FMINCON is used for solving resulting NLP.

#### Cite This Paper

FatemeGhomanjani, Mohammad HadiFarahi,"Optimal Control of Switched Systems based on Bezier Control Points", International Journal of Intelligent Systems and Applications(IJISA), vol.4, no.7, pp.16-22, 2012. DOI: 10.5815/ijisa.2012.07.02

#### Reference

[1]A. Bemporad, F. Borrelli, M. Morari, Optimal controllers for hybrid systems: stability and piecewise linear explicit form. Proceedings - 39th IEEE Conference on Decision Control, 2000, pp. 1810-1815.

[2]J. Lu, L. Liao, A. Nerode, J. H. Taylor, Optimal control of systems with continuous and discrete states. Proceedings - 32nd IEEE Conference on Decision Control, 1993, pp. 2292-2297.

[3]J. Zheng, , T. W. Sederberg, R. W. Johnson, Least squares methods for solving differential equations using Bezier control points. Applied Numerical Mathematics, v48, 2004, pp. 237-252.

[4]H .W. J. Lee, L. S. Jennings, K. L. Teo, V. Rehbock, Control parametrization enhancing technique for time optimal control problems. Dynamic Systems and Applications, v6, 1997, pp. 243-262.

[5]K. Gokbayrak, C. G. Cassandras, Hybrid controllers for hierarchically decomposed systems. Proceedings of the Hybrid Systems: Computation Control (HSCC 2000), 2000, pp. 117-129.

[6]L. Wu, J. Lam, Sliding mode control of switched hybrid systems with time-varying delay. International Journal of Adaptive Control and Signal Processing, v22, 2008, pp. 909-931.

[7]M. S. Branicky, V. S. Borkar, S. K. Mitter, A unified framework for hybrid control: model and optimal control theory. IEEE Transactions on Automatic Control, v43, 1998, pp. 31-45.

[8]A. Giua, C. Seatzu, C. V. D. Mee, Optimal control of autonomous linear systems switched with a pre-assigned finite sequence. Proceedings of the IEEE International Symposium on Intelligent Control, 2001, pp. 144-149.

[9]B. Farhadinia, K. L. Teo, R. C. Loxton, A computational method for a class of non-standard time optimal control problems involving multiple time horizons. Mathematical and Computer Modelling, v49, 2009, pp. 1682-1691.

[10]B. Lincoln, B. M. Bernhardsson, Efficient pruning of search trees in LQR control of switched linear systems. Proceedings - 39th IEEE Conference on Decision Control, 2000, pp. 1828-1833.

[11]H. H. Mehne, M. H. Farahi, A. V. Kamyad, MILP modelling for the time optimal control problem in the case of multiple targets, Optimal Control Applications and Methods, v27, 2006, pp. 77-91.

[12]J. Johansson, Piecewise linear control systems. Ph.D. dissertation, Lund Inst. Technol, Lund, Sweden, 1999.

[13]M. Egerstedt, Y. Wardi, F. Delmotte, Optimal control of switching times in switched dynamical systems. Proceedings of the IEEE conference on decision and control, v3, 2003, pp. 2138-2143.

[14]X. Xu, P. J. Antsakalis, Optimal control of switched systems based on parameterization of the switching instants. IEEE Transactions on Automatic Control, v 49, n1, 2004, pp. 2-16.

[15]X. Xu, G. Zhai, S. He, Some results on practical stabilizability of discrete-time switched affine systems. Nonlinear Analysis: Hybrid Systems. v4, 2010, pp. 113-121.

[16]B. Niua, J. Zhaoa, Stabilization and L2-gain analysis for a class of cascade switched nonlinear systems: An average dwell-time method. Nonlinear Analysis: Hybrid Systems, v5, 2011, pp. 671-680.

[17]I. Hwang, J. Li, D. Dua, Numerical algorithm for optimal control of a class of hybrid systems: differential transformation based approach. International Journal of Control, v81, n2, 2008, pp. 277-293.