INFORMATION CHANGE THE WORLD

International Journal of Intelligent Systems and Applications(IJISA)

ISSN: 2074-904X (Print), ISSN: 2074-9058 (Online)

Published By: MECS Press

IJISA Vol.10, No.10, Oct. 2018

Mathematical Model of the Dynamics in a One Nonholonomic Vibration Protection System

Full Text (PDF, 619KB), PP.20-26


Views:31   Downloads:0

Author(s)

Viktor Legeza, Ivan Dychka, Ruslan Hadyniak, Lіubov Oleshchenko

Index Terms

Heavy Homogeneous Sphere;Pure Rolling, Appell’s Formalism;Translational Motion;Spherical Recess;Energy Conservation Integral;Roller Absorbers

Abstract

Dynamic behavior of a heavy homogeneous sphere in a spherical cavity of a supporting body that performs specified translational movements in space has been studied. Using the Appel formalism, the equations of ball motion in a moving spherical cavity without slip are constructed and a numerical analysis of the evolution of the ball motion is carried out.

Cite This Paper

Viktor Legeza, Ivan Dychka, Ruslan Hadyniak, Lіubov Oleshchenko, "Mathematical Model of the Dynamics in a One Nonholonomic Vibration Protection System", International Journal of Intelligent Systems and Applications(IJISA), Vol.10, No.10, pp.20-26, 2018. DOI: 10.5815/ijisa.2018.10.03

Reference

[1]Den Hartog J.P. Mechanical Vibrations. McGraw-Hill, New York, 1956. – 436 p.

[2]Dynamic calculation of buildings and structures: Handbook of the designer (in Russian) / Ed. B.G. Korenev, I.M. Rabinovich. – Moscow: Stroiizdat, 1984. – 304 p. 

[3]Dynamic calculation of special engineering buildings and structures: Handbook of the designer (in Russian) / Ed. B.G. Korenev, A.F. Smirnov. – M.: Stroiizdat, 1986. – 185 p.

[4]N.A.Fufaev. A sphere rolling on a horizontal rotating plane // Journal of Applied Mathematics and Mechanics, 1983, V.47, Issue 1, p.p.  27 – 29.

[5]N.A.Fufaev. Theory of the motion of systems with rolling // Journal of Applied Mathematics and Mechanics, 1985, V.49, Issue 1, p.p.  49 – 53.

[6]N.A.Fufaev. Rolling of a heavy homogeneous ball over a rough sphere rotating around a vertical axis // Soviet Applied Mechanics, 1987, V.23, Issue 1, p.p. 86 – 89.

[7]Korenev B.G., Reznikov L.M. Dynamic Vibration Absorbers – Theory and Technical Applications. Chichester. – John Willey and Sons‖. – 1993. – 296 p.

[8]Legeza V.P. Vibration protection of dynamic systems with roller absorbers (in Ukrainian). – Kyiv, "The Fourth Wave", 2010. – 280 p.

[9]Legeza V.P. Numerical analysis of the motion of a ball in an ellipsoidal cavity with a moving upper bearing // Soviet Applied Mechanics. – 1987. – Vol. 23, №2. – P. 191 – 195. 

[10]Legeza V.P. Kinematics and dynamics of a mechanical system on rollers that provide nonholonomic constraints // Journal of Mathematical Sciences (Kluwer Academic Publishers–Plenum Publishers). –1994. – Vol. 72, №5. – P. 3299 – 3305. 

[11]Legeza V.P. Plane problem on a heavy ball rolling in a spherical recess of an inverted pendulum // Int. Appl. Mech. – 2001. – Vol. 37, №8. – P. 1089 – 1093.

[12]Li J., Zhang Z., Chen J. Experimental Study on Vibration Control of Offshore Wind Turbines Using a Ball Vibration Absorber // J. Energy and Power Engineering, 2012, № 4. – P. 153 – 157. 

[13]Lobas L.G. On Rolling Systems // Int. Appl. Mech. – 2000. – 36, № 5. – P. 691 – 696.

[14]Lurie A.I. Analytical mechanics. – Berlin: Springer – Verlag, 2002. – 864 p. 

[15]Neimark Yu.I., Fufayev N.A. Dynamics of nonholonomic systems. – Providence: Amer. Mathem. Society, 2004. – 518 p.

[16]Obradovic A., Savinic S., Radulovic R. The brachistochronic motion of a vertical disk rolling on a horizontal plane without slip // Theoretical and applied mechanics, V. 44 (2017), Issue 2, p.p. 237 – 254. 

[17]Pirner M. Actual Behaviour of a Ball Vibration Absorber // Wind Engineering and Industrial Aerodynamics. – 2002, Vol. 90, №8. – P. 987 – 1005. 

[18]Pirner M., Fischer O. One prototype of the ball absorber and its effect on the tower // Int. Association for Shell and Spatial Struct. Proc. Working Group IV Masts and Towers. 19th Meeting in Krakow, Poland, September, 1999. – P. 187–196.

[19]Pirner M., Fischer O. The development of a ball vibration absorber for the use on towers // IASS, Jour. Of the Int. Association for shell and spatial structures, 2000, Vol. 41, №2. – P. 91 – 99.

[20]Weaver W., Timoshenko S.P., Young D.H. Vibration Problems in Engineering, 5th Edition. – John Wiley (N.Y.), 1990. – 624 p. 

[21]Zhang Z. –L., Chen J.–B., Li J. Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber // Structure and Infrastructure Engineering, Taylor & Francis, 2014, Vol. 10, № 8. – P. 1087 – 1100. 

[22]Zhang Z. –L., Li J., Nielsen S.R.K., Basu B. Mitigation of edgewise vibrations in wind turbine blades by means of roller dampers // J. of Sound and Vibration, 333 (2014). – P. 5283 – 5298. 

[23]Zhengbing Hu, Viktor Legeza, Ivan Dychka, Dmytro Legeza. Mathematical Model of the Damping Process in a One System with a Ball Vibration Absorber // International Journal of Intelligent Systems and Applications (IJISA), Vol. 10, No. 1, Jan. 2018, p.p. 24 – 33.