International Journal of Image, Graphics and Signal Processing (IJIGSP)

IJIGSP Vol. 16, No. 1, Feb. 2024

Cover page and Table of Contents: PDF (size: 664KB)

Table Of Contents

REGULAR PAPERS

A Survey of Artificial Life and Nature-inspired Techniques in Computer Graphics and Visualization

By Bushra Ferdousi Tim Mc Graw

DOI: https://doi.org/10.5815/ijigsp.2024.01.01, Pub. Date: 8 Feb. 2024

Artificial life and other nature-inspired techniques have been applied to many problems in computer graphics. Some of these techniques are based on observations of organic systems, such as slime molds and flocking animals, and can mimic some of their behaviors and structures. The emergent behavior of these systems can improve the realism of procedurally-generated assets used in computer graphics applications, such as animation and texture maps. In this work, we provide a survey of these techniques and applications, including cellular automata, differential growth, reaction-diffusion, and Physarum. The techniques are compared and contrasted, and the common themes and patterns are elucidated to create a taxonomy which can be useful to researchers studying existing techniques and developing new ones.

[...] Read more.
Algorithms for Polarization-singular processing of Mueller-matrix images of Soft Tissues for Biomedical Applications

By Liliya Diachenko Edgar Vatamanitsa Oleksandr Ushenko Oleksandr Salega Oleksandra Litvinenko Zhengbing Hu

DOI: https://doi.org/10.5815/ijigsp.2024.01.02, Pub. Date: 8 Feb. 2024

Traditional methods of imaging Muller-matrix polarimetry ensure obtaining large arrays of experimental data in the form of 16 Muller-matrix images. Processing and comparative analysis of the received information is quite time-consuming and requires a long time. A new algorithmic polarization-singular approach to the analysis of coordinate distributions of matrix elements (Mueller-matrix maps) of polycrystalline birefringent structure of biological tissues is considered. A Mueller-matrix model for describing the optical anisotropy of biological layers is proposed. Analytical correlations between polarization-singular states of the object field and characteristic values of Mueller-matrix images of birefringence soft tissue objects were found. The proposed algorithmic polarization-singular theory is experimentally verified. Examples of polarization singularities networks of Mueller-matrix maps of histological preparations of real tissues of female reproductive sphere are given. Diagnostic possibilities of the developed polarization-singular algorithms in diagnostics and differentiation of the stages of extragenital endometriosis are illustrated. Another area of biomedical diagnostics has been successfully tested: polarization-singular criteria for forensic Mueller-matrix determination of the age of myocardial injury of the deceased have been defined.

[...] Read more.
Performance Analysis of Various Image Feature Extractor Filters for Pothole Anomaly Classification

By Risikat Folashade Adebiyi Habeeb Bello-Salau Adeiza James Onumanyi Bashir Olaniyi Sadiq Abdulfatai Dare Adekale Busayo Hadir Adebiyi Emmanuel Adewale Adedokun

DOI: https://doi.org/10.5815/ijigsp.2024.01.03, Pub. Date: 8 Feb. 2024

Machine learning (ML) classifiers have lately gained traction in the realm of intelligent transportation systems as a means of enhancing road navigation while also assisting and increasing automotive user safety and comfort. The feature extraction stage, which defines the performance accuracy of the ML classifier, is critical to the success of any ML classifiers used. Nonetheless, the efficacy of various ML feature extractor filters on image data of road surface conditions obtained in a variety of illumination settings is uncertain. Thus, an examination of eight different feature extractor filters, namely Auto colour, Binary filter, Edge Detection, Fuzzy Color Texture Histogram Filter (FCTH), J-PEG Color, Gabor filter, Pyramid of Gradients (PHOG), and Simple Color, for extracting pothole anomalies feature from road surface conditions image data acquired under three environmental scenarios, namely bright, hazy, and dim conditions, prior classification using J48, JRip, and Random Forest ML models. According to the results of the experiments, the auto colour image filter is better suitable for extracting features for categorizing road surface conditions image data in bright light circumstances, with an average classification accuracy of roughly 96%. However, with a classification accuracy of around 74%, the edge detection filter is best suited for extracting features for the classification of road surface conditions image data captured in hazy light circumstances. The autocolor filter, on the other hand, has an accuracy of roughly 87% when it comes to classifying potholes in low-light conditions. These findings are crucial in the selection of feature extraction filters for use by ML classifiers in the development of a robust autonomous pothole detection and classification system for improved navigation on anomalous roads and possible integration into self-driving cars.

[...] Read more.
Copy-Move Forgery Detection and Localization Framework for Images Using Stationary Wavelet Transform and Hybrid Dilated Adaptive VGG16 with Optimization Strategy

By Prabhu Bevinamarad Prakash Unki Padmaraj Nidagundi

DOI: https://doi.org/10.5815/ijigsp.2024.01.04, Pub. Date: 8 Feb. 2024

Due to the availability of low-cost electronic devices and advanced image editing tools, changing the semantic meaning of a particular image has become straightforward by employing various image manipulation techniques like image copy-move, image splicing and removal operations. The tampered images with this sophisticated software are rich in visualization, making the modifications invisible to the naked eye. Detecting these image alterations is laborious, time-consuming, and often yields inappropriate results. The current techniques use conventional square, slide regular, and artifacts procedures to identify image deviations to combat image forgery practices. Still, these techniques exhibit problems related to generalization, training and testing, and model complexity. So, in this paper, a novel image forgery detection and localization framework is implemented using stationary wavelet transform (SWT), and a Hybrid Dilated Adaptive VGG16 model with optimization is introduced to classify forgery images and localize the forgery regions present in an image. Initially, the proposed framework processes the input image with SWT to decompose an image into different subband and further divide it into patches. After that, the hybrid dilated adaptive VGG16 Network (HDA-VGG16Net) is built to extract the deep image features from the patches. Later, the Hybridized Tuna Swarm with Bald Eagle Search Optimization (HTS-BESO) technique is applied to optimize the VGG16 parameters. Finally, feature matching is formed using multi-similarity searching to recognize whether the input image is forged or original by locating forgery regions. The evaluation results are compared with existing forgery detection approaches to ensure the efficiency of the developed model by considering multiple performance measures.

[...] Read more.
When Handcrafted Features Meet Deep Features: An Empirical Study on Component-Level Image Classification

By Tauseef Khan Ayatullah Faruk Mollah

DOI: https://doi.org/10.5815/ijigsp.2024.01.05, Pub. Date: 8 Feb. 2024

Scene text detection from natural images has been a prime focus from last few decades. Classification of foreground object components is an essential task in many scene text detection approaches under uncontrollable environment. As it heavily relies upon robust and discriminating features, several features have been engineered for component-level text non-text classification. Competency of such feature descriptors particularly in respect of deep features needs to be examined. In this paper, we present prospective feature descriptors applicable to component-level text non-text classification and examine their performance along with convolutional neural network based deep features. Series of experiments have been carried out on publicly available benchmark dataset(s) of multi-script document-type, scene-type, and combined text vs. non-text components. Interestingly, feature combination is found to put well-demonstrated deep features into tough competition on most datasets under consideration. For instance, on the combined text non-text classification problem, CNN based deep features yield 97.6%, whereas aggregated features produce an accuracy of 98.4%. Similar findings are obtained on other experiments as well. Along with the quantitative figures, results have been analyzed and insightful discussion is made to ascertain the conjectures drawn herein. This study may cater the need of leveraging potentially strong handcrafted feature descriptors.

[...] Read more.
Non-Invasive Blood Group Prediction Using Optimized EfficientNet Architecture: A Systematic Approach

By Nitin Sakharam Ujgare Nagendra Pratap Singh Prem Kumari Verma Madhusudan Patil Aryan Verma

DOI: https://doi.org/10.5815/ijigsp.2024.01.06, Pub. Date: 8 Feb. 2024

This research work proposed a non-invasive blood group prediction approach using deep learning. The ability to swiftly and accurately determine blood types plays a critical role in medical emergencies prior to administering red blood cell, platelet, and plasma transfusions. Even a minor error during blood transfer can have severe consequences, including fatality. Traditional methods rely on time-consuming automated blood analyzers for pathological assessment. However, these processes involve skin pricking, which can cause bleeding, fainting, and potential skin lacerations. The proposed approach circumvents noninvasive procedures by leveraging rich EfficientNet deep learning architecture to analyze images of superficial blood vessels found on the finger. By illuminating the finger with laser light, the optical image of blood vessels hidden on the finger skin surface area is captured, which incorporates specific antigen shapes such as antigen ‘A’ and antigen ‘B’ present on the surface. Captured shapes of different antigen further used to predict the blood group of humans. The system requires high-definition camera to capture the antigen pattern from the red blood cells surface for classification of blood type without piercing the skin of patient. The proposed solution is not only straightforward and easily implementable but also offers significant advantages in terms of cost-effectiveness and immediate identification of ABO blood groups. This approach holds great promise for medical emergencies, military battleground scenarios, and is particularly valuable when dealing with infants where invasive procedures pose additional risks.

[...] Read more.
Cyclone Prediction from Remote Sensing Images Using Hybrid Deep Learning Approach Based on AlexNet

By Harshal Patil

DOI: https://doi.org/10.5815/ijigsp.2024.01.07, Pub. Date: 8 Feb. 2024

With the world feeling the negative effects of climate change, detecting and predicting severe weather occurrences is now an extremely vital and difficult task. Cyclones, a type of extreme weather phenomenon, have increased in frequency and severity in Indian subcontinent regions over the past few years. It is estimated that around three cyclones struck the east coastal region of India, causing substantial damage to people, farms, and infrastructure. Predicting cyclones ahead of time is crucial for avoiding or significantly lowering the devastating effects. The traditional methodologies employed numerical equations that demand strong experience and greater skills to obtain satisfactory prediction accuracy. Problems with domain expertise and the probability of human mistakes can be avoided with the help of Deep Learning (DL). As a result, in this work, we sought to forecast cyclone intensity using a Convolution Neural Network (CNN), a basic DL structure. To increase the CNN model's architecture and effectiveness, hybrid models such as Convolution Neural Network & Long short-term memory (CNN-LSTM) and AlexNet & Gated recurrent units (AlexNet-GRU) are developed. Data from the INSAT 3D satellite was utilized to develop and evaluate the DL model. We processed both the training and testing dataset and increase the training dataset using augmentation. All three DL models are tested and compared, the AlexNet-GRU model outperforms on the test data, with a relatively high accuracy of 93.35% and a low mean square error (MSE) of 215.

[...] Read more.
Advances in Medical Imaging: Using Convolutional Neural Networks for White Blood Cell Identification

By Ishwari Singh Rajput Sonam Tyagi Aditya Gupta Vibha Jain

DOI: https://doi.org/10.5815/ijigsp.2024.01.08, Pub. Date: 8 Feb. 2024

White blood cells (WBC) perform a vital function within the immune system by actively protecting the body from a wide range of diseases and foreign substances. Diverse types of WBCs exist, including neutrophils, lymphocytes, eosinophils, and monocytes, each possessing distinct roles within the immune response. Neutrophils are typically the initial immune cells to mobilize in response to infections and inflammation, exhibiting a rapid and robust reaction. Conversely, lymphocytes play a pivotal role in the recognition and targeted elimination of pathogens. Nevertheless, identifying and classifying WBCs poses significant challenges and demands considerable time, even for seasoned medical practitioners. The process of manual classification is frequently characterized by subjectivity and is susceptible to errors, thereby potentially compromising the precision of both diagnosis and treatment. In response to this challenge, scholars have devised deep learning methodologies that can automate the process of WBC classification, thereby enhancing its precision. This study employs a convolutional neural network (CNN) to classify WBCs based on imaging data. The CNN underwent training using a substantial dataset comprising body cell images. This training facilitated the acquisition of discerning characteristics specific to various WBC types, thereby enabling accurate classification. The methodology was evaluated within a simulated environment, yielding encouraging outcomes. The approach that was proposed successfully achieved an average accuracy rate of 98.33% in the classification of WBCs. This outcome serves as evidence of deep learning techniques enhancing the speed and accuracy of WBC classification.

[...] Read more.