Unified Architecture for Integrated Health and Environmental Based Model; a Case of Cholera Epidemics

Full Text (PDF, 446KB), PP.34-43

Views: 0 Downloads: 0

Author(s)

Judith Leo 1,* Kisangiri Michael 1

1. Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O.Box 447, Arusha, +255, Tanzania

* Corresponding author.

DOI: https://doi.org/10.5815/ijeme.2019.04.04

Received: 17 Mar. 2019 / Revised: 9 May 2019 / Accepted: 18 Jun. 2019 / Published: 8 Jul. 2019

Index Terms

Unified Architectural Model, Health Management Information System and Environmental Management Information System, View-Based Architecture, Architecture Description

Abstract

With the recent increase of infectious diseases characterized by epidemic outbreaks whose origin are from environmental factors, the use of environmental variables such as water bodies and weather variables for effective diseases analysis has dramatically increased. The situation has stirred up efforts of software engineers towards integrating the collection of environmental factors from Environmental Management Systems (EMSs) into Healthcare Information Systems (HISs). HISs and EMSs have a large diversity of stakeholders and technological application domains; as a result, they face interoperability complexities. In spite of the established knowledge of software-architecture, there is still a lack of unified architecture for integrated Healthcare and Environmental Management Information Systems (HEMISs) to support the development of HEMISs and solve the interoperability challenge in a holistic way. This work proposes conceptual design view of the unified architectural model for HEMIS that would serve as a blueprint for the development of HEMISs and also, enhancing the analysis of epidemic diseases which have a strong linkage with environmental factors. As a proof of concept, the designed unified architecture has adopted features from IEEE 42010-standard, Siemens’ Four View Model, Protocol Translator and Key Attribute Value table architecture style, and used Unified Modeling Language (UML) in its design visualization.

Cite This Paper

Judith Leo, Kisangiri Michael," Unified Architecture for Integrated Health and Environmental Based Model; a Case of Cholera Epidemics", International Journal of Education and Management Engineering(IJEME), Vol.9, No.4, pp. 34-43, 2019.DOI: 10.5815/ijeme.2019.04.04

Reference

[1]M. Xu, B. Kan, D. Wang, Identifying environmental risk factors of cholera in a coastal area with geospatial technologies, Int. J. Environ. Res. Public Health. 12 (2015) 354–370. doi:10.3390/ijerph120100354.

[2]A. Jutla, E. Whitcombe, N. Hasan, B. Haley, A. Akanda, A. Huq, M. Alam, R.B. Sack, R. Colwell, Environmental Factors Influencing Epidemic Cholera, 89 (2013) 597–607. doi:10.4269/ajtmh.12-0721.

[3]G.C. Leckebusch, A.F. Abdussalam, Health & Place Climate and socioeconomic in fl uences on interannual variability of cholera in Nigeria, Health Place. 34 (2015) 107–117. doi:10.1016/j.healthplace.2015.04.006.

[4]A. Nori-Sarma, A. Gurung, G.S. Azhar, A. Rajiva, D. Mavalankar, P. Sheffield, M.L. Bell, Opportunities and challenges in public health data collection in Southern Asia: Examples from Western India and Kathmandu Valley, Nepal, Sustain. 9 (2017). doi:10.3390/su9071106.

[5]D. Popp, R. Newell, A. Jaffe, Energy, the Environment, and Technological Change, 1st ed., Elsevier B.V., 2009. doi:10.3386/w14832.

[6]O. El-Gayar, B.D. Fritz, Environmental Management Information Systems (EMIS) for Sustainable Development: A Conceptual Overview, Commun. Assoc. Inf. Syst. 17 (2006) 34. http://aisel.aisnet.org/cais/vol17/iss1/34.

[7]A.M. Mosadeghrad, Factors Influencing Healthcare Service Quality, Int. J. Heal. Policy Manag. 3 (2014) 77–89. doi:10.15171/ijhpm.2014.65.

[8]P.J. Gosling, M. Eberhard, Dictionary of Parasitology Interdisciplinary Public Health Reasoning and Epidemic Modelling : The Case of Black Death Structural Biology of Bacterial Pathogenesis, 12 (2006) 2005–2006.

[9]K. Cresswell, A. Sheikh, Organizational issues in the implementation and adoption of health information technology innovations: An interpretative review, Int. J. Med. Inform. 82 (2013) e73–e86. doi:10.1016/j.ijmedinf.2012.10.007.

[10]B.W. Mamlin, W.M. Tierney, The Promise of Information and Communication Technology in Healthcare: Extracting Value from the Chaos, Am. J. Med. Sci. 351 (2016) 59–68. doi:10.1016/j.amjms.2015.10.015.

[11]A. Gawanmeh, H. Al-Hamadi, M. Al-Qutayri, S.K. Chin, K. Saleem, Reliability analysis of healthcare information systems: State of the art and future directions, 2015 17th Int. Conf. E-Health Networking, Appl. Serv. Heal. 2015. (2016) 68–74. doi:10.1109/HealthCom.2015.7454475.

[12]C.I.J. Nykiforuk, L.M. Flaman, Geographic Information Systems (GIS) for Health Promotion and Public Health: A Review, Health Promot. Pract. 12 (2011) 63–73. doi:10.1177/1524839909334624.

[13]O. Iroju, A. Soriyan, I. Gambo, J. Olaleke, Interoperability in Healthcare : Benefits , Challenges and Resolutions, Int. J. Innov. Appl. Stud. ISSN. 3 (2013) 2028–9324. https://www.researchgate.net/profile/Iroju_Olaronke/publication/282322922_Interoperability_  in_Healthcare_Benefits_Challenges_and_Resolutions/links/560bada308ae6de32e9a457a.pdf.

[14]L. Chung, J.D.P. Leite, On Non-Functional Requirements in Software Engineering, Concept. Model. Found. (2009) 363–379. doi:10.1007/978-3-642-02463-4_19.

[15]B. Blobel, Advanced and secure architectural EHR approaches, Int. J. Med. Inform. 75 (2006) 185–190. doi:10.1016/j.ijmedinf.2005.07.017.

[16]R. Jardim-Goncalves, A. Grilo, A. Steiger-Garcao, Challenging the interoperability between computers in industry with MDA and SOA, Comput. Ind. 57 (2006) 679–689. doi:10.1016/j.compind.2006.04.013.

[17]H. Abukwaik, D. Taibi, D. Rombach, Interoperability-related architectural problems and solutions in information systems: A scoping study, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 8627 LNCS (2014) 308–323. doi:10.1007/978-3-319-09970-5_27.

[18]F. Barbarito, F. Pinciroli, J. Mason, S. Marceglia, L. Mazzola, S. Bonacina, Implementing standards for the interoperability among healthcare providers in the public regionalized Healthcare Information System of the Lombardy Region, J. Biomed. Inform. 45 (2012) 736–745. doi:10.1016/j.jbi.2012.01.006.

[19]I. Gambo, O. Oluwagbemi, P. Achimugu, Lack of Interoperable Health Information Systems in Developing Countries: An Impact Analysis, J. Health Inform. Dev. Ctries. 5 (2011) 185–196. http://www.jhidc.org/index.php/jhidc/article/view/60.

[20]Y.E. Gelogo, H.K. Kim, Unified ubiquitous healthcare system architecture with collaborative model, Int. J. Multimed. Ubiquitous Eng. 8 (2013) 239–244.

[21]E.C.M. Gabriel de Oliveira, Gabriel de Oliveira, Elisabete C. Moraes, Nathaniel A. Brunsell, Yosio E. Shimabukuro, Y.E.S. Nathaniel A. Brunsell, G.A.V.M. and Luiz E.O.C. Aragão, G.A.V.M. and T.V. dos Santos, T.V. dos Santos, A. information is Ava, We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 % Control of a Proportional Hydraulic System, Intech Open. 2 (2015) 64. doi:10.5772/32009.

[22]E. Summary, T. Issue, Unified Communications for Healthcare, (2009) 1–9.

[23]P. Jankowski, Towards participatory geographic information systems for community-based environmental decision making, J. Environ. Manage. 90 (2009) 1966–1971. doi:10.1016/j.jenvman.2007.08.028.

[24]E. Mugerezi, An Environmental Management Information System (EMIS) for Iringa Municipality, Tanzania Implementation Challenges, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXIV (2000) 78–86.

[25]M. LeMay, G. Gross, C.A. Gunter, S. Garg, Unified architecture for large-scale attested metering, Proc. Annu. Hawaii Int. Conf. Syst. Sci. (2007) 1–10. doi:10.1109/HICSS.2007.586.

[26]E.F.Z. Santana, A.P. Chaves, M.A. Gerosa, F. Kon, D.S. Milojicic, Software Platforms for Smart Cities, ACM Comput. Surv. 50 (2017) 1–37. doi:10.1145/3124391.

[27]O.A. Adenuga, R.M. Kekwaletswe, A. Coleman, eHealth integration and interoperability issues: towards a solution through enterprise architecture, Heal. Inf. Sci. Syst. 3 (2015) 1–8. doi:10.1186/s13755-015-0009-7.

[28]D. Emery, R. Hilliard, Every architecture description needs a framework: Expressing architecture frameworks using ISO/IEC 42010, 2009 Jt. Work. IEEE/IFIP Conf. Softw. Archit. Eur. Conf. Softw. Archit. WICSA/ECSA 2009. (2009) 31–40. doi:10.1109/WICSA.2009.5290789.

[29]L. Schmitt, T. Falck, F. Wartena, D. Simons, Novel ISO / IEEE 11073 Standards for Personal Telehealth Systems Interoperability, (2008) 146–148. doi:10.1109/HCMDSS-MDPnP.2007.9.

[30]D.M. Lopez, B.G.M.E. Blobel, A development framework for semantically interoperable health information systems, 8 (2008) 83–103. doi:10.1016/j.ijmedinf.2008.05.009.

[31]S. Agarwal, L.E. Pape, C.H. Dagli, N.K. Ergin, D. Enke, A. Gosavi, R. Qin, D. Konur, R. Wang, R. Deepak, Flexible and Intelligent Learning Architectures for SoS ( FILA-SoS ): Architectural Evolution in Systems-of-Systems, Procedia - Procedia Comput. Sci. 44 (2015) 76–85. doi:10.1016/j.procs.2015.03.005.

[32]D. System, Multi-View Software Architecture Design : Case Study of a Mission-Critical Multi-View Software Architecture Design : Case Study of a Mission-Critical Defense System, (2015). doi:10.5539/cis.v8n4p12.

[33]H. Derhamy, Towards Interoperable Industrial Internet of Things - An on-demand multi-protocol translator service, 2016. https://drive.google.com/file/d/0B9RE1dEaGFCqUko0ZUd3TFlhaTQ/ view?usp=sharing.